University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Effect of internal mixture on black carbon radiative forcing

        View/Open
        906714.pdf (PDF, 3Mb)
        Author
        Chung, Chul E.
        Lee, Kyunghwa
        Mueller, D.
        Attention
        2299/12716
        Abstract
        The effects of coating on black carbon (BC) optical properties and global climate forcing are revisited with more realistic approaches. We use the Generalized Multiparticle Mie method along with a realistic size range of monomers and clusters to compute the optical properties of uncoated BC clusters. Mie scattering is used to compute the optical properties of BC coated by scattering material. When integrated over the size distribution, we find the coating to increase BC absorption by up to a factor of 1.9 (1.8-2.1). We also find the coating can significantly increase or decrease BC backscattering depending on shell size and how shell material would be distributed if BC is uncoated. The effect of coating on BC forcing is computed by the Monte-Carlo Aerosol Cloud Radiation model with observed clouds and realistic BC spatial distributions. If we assume all the BC particles to be coated, the coating increases global BC forcing by a factor of 1.4 from the 1.9 x absorption increase alone. Conversely, the coating can decrease the forcing by up to 60% or increase it by up to 40% by only the BC backscattering changes. Thus, the combined effects generally, but not necessarily, amplify BC forcing.
        Publication date
        2012-01
        Published in
        Tellus Series B-Chemical and Physical Meteorology
        Published version
        https://doi.org/10.3402/tellusb.v64i0.10925
        Other links
        http://hdl.handle.net/2299/12716
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan