University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Identification of the lipid-binding site of phosphatidylcholine-transfer protein with phosphatidylcholine analogs containing photoactivable carbene precursors

        Author
        Westerman, J.
        Wirtz, K.W.A.
        Berkhout, Theo
        Vandeenen, L.L.M.
        Radhakrishnan, R.
        Khorana, H.G.
        Attention
        2299/12872
        Abstract
        The lipid binding site of the phosphatidylcholine transfer protein from bovine liver has been investigated by use of phosphatidylcholine analogs which carry a diazirinophenoxy group linked to the ω-carbon of either the sn-2-[1-14C]hexanoyl (PCI) or sn-2-[1-14C]undecanoyl chain (PC II). Photolysis of the PCI(PCII)-transfer protein complex resulted in a covalent coupling of 30–40% of the label to the protein as shown by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Upon mild alkaline treatment of the photolysed complex the protein containing covalently coupled 14C-label was separated fro the noncoupled 14C-label by gel permeation chromatography. The 14C-labeled protein was degraded with protease from Staphylococcus aureus, trypsin and cyanogen bromide and specific 14C-labeled peptides were sequenced by automated Edman degradation. Major sites of coupling shown by release of radioactivity were identified as Tyr54 and the peptide segment Val171-Phe-Met-Tyr-Tyr-Phe-Asp177. Both PC I and PC II coupled extensively to Tyr54 (90% and 5% of total labeling, respectively). The remainder of the radioactivity was released from the peptide Val171-Asp177 with a distinct difference in in the pattern of release depending on whether PC I or PC II were used. Thus, coupling occurred preferentially to Tyr175 and Asp177 with PC I while Val171 and Met173 were labeled preferentially with PC II. This shift in coupling is compatible with an increasae of 0.6 nm for the sn-2-fatty-acyk cgaubs if OC I and II, assuming that the peptide Val171-Asp177 has adopted the strongly predicted β-strand configuration. These data have beeninterpreted in terms of the localization of phosphatidylcholine in the phosphatidylcholine transfer protein
        Publication date
        1983
        Published in
        European Journal of Biochemistry
        Published version
        https://doi.org/10.1111/j.1432-1033.1983.tb07382.x
        Other links
        http://hdl.handle.net/2299/12872
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan