GRAPE-SPH chemodynamical simulation of elliptical galaxies - I : Evolution of metallicity gradients
Author
Kobayashi, C.
Attention
2299/13651
Abstract
We simulate the formation and chemodynamical evolution of 124 elliptical galaxies using a GRAPE-SPH code that includes various physical processes that are associated with the formation of stellar systems: radiative cooling, star formation, feedback from Type II and Ia supernovae and stellar winds, and chemical enrichment. In our cold dark matter (CDM)-based scenario, galaxies form through the successive merging of subgalaxies with various masses. Their merging histories vary between a major merger at one extreme and a monolithic collapse of a slow-rotating gas cloud at the other extreme. We examine the physical conditions during 151 merging events that occur in our simulation. The basic processes driving the evolution of the metallicity gradients are as follows: (i) destruction by mergers to an extent dependent on the progenitor mass ratio; (ii) regeneration when strong central star formation is induced at a rate dependent on the gas mass of the secondary; and (iii) slow evolution as star formation is induced in the outer regions through late gas accretion. We succeed in reproducing the observed variety of the radial metallicity gradients. The average metallicity gradient Deltalog Z/Deltalog rsimilar or equal to- 0.3 with dispersion of +/- 0.2 and no correlation between gradient and galaxy mass are consistent with observations of Mg-2 gradients. The variety of the gradients stems from the difference in the merging histories. Galaxies that form monolithically have steeper gradients, while galaxies that undergo major mergers have shallower gradients. Thus merging histories can, in principle, be inferred from the observed metallicity gradients of present-day galaxies. The observed variation in the metallicity gradients cannot be explained either by monolithic collapse or by major merger alone. Rather it requires a model in which both formation processes arise, such as the present CDM scheme.
Publication date
2004-01-21Published in
Monthly Notices of the Royal Astronomical SocietyPublished version
https://doi.org/10.1111/j.1365-2966.2004.07258.xOther links
http://hdl.handle.net/2299/13651Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
The H alpha galaxy survey. I. The galaxy sample, H alpha narrow-band observations and star formation parameters for 334 galaxies
James, P.A.; Shane, N.S.; Beckman, J.E.; Cardwell, A.; Collins, C.A.; Etherton, J.; de Jong, R.S.; Fathi, K.; Knapen, J.; Peletier, R.F.; Percival, S.M.; Pollacco, D.L.; Seigar, M.S.; Stedman, S. (2004)We discuss the selection and observations of a large sample of nearby galaxies, which we are using to quantify the star formation activity in the local Universe. The sample consists of 334 galaxies across all Hubble types ... -
On the Key Processes that Drive Galaxy Evolution: the Role of Galaxy Mergers, Accretion, Local Environment and Feedback in Shaping the Present-Day Universe
Martin, Garreth (2019-07-17)The study of galaxy evolution is a fundamental discipline in modern astrophysics, dealing with how and why galaxies of all types evolve over time. The diversity of present-day galaxies is a reflection of the processes ... -
The Physical Processes that Drive Galaxy Evolution - from Massive Galaxies to the Dwarf Regime
Jackson, Ryan (2021-09-25)The study of galaxy formation and evolution is a cornerstone in astrophysics, as galaxies connect together all scales of the Universe. The physical processes that govern galaxies therefore needs to be fully understood if ...