University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item

        The History and Rate of Star Formation within the G305 Complex

        View/Open
        Download fulltext (PDF, 119Mb)
        Author
        Faimali, Alessandro Daniele
        Attention
        2299/13732
        Abstract
        Within this thesis, we present an extended multiwavelength analysis of the rich massive Galactic star-forming complex G305. We have focused our attention on studying the both the embedded massive star-forming population within G305, while also identifying the intermediate-, to lowmass content of the region also. Though massive stars play an important role in the shaping and evolution of their host galaxies, the physics of their formation still remains unclear. We have therefore set out to studying the nature of star formation within this complex, and also identify the impact that such a population has on the evolution of G305. We firstly present a Herschel far-infrared study towards G305, utilising PACS 70, 160 μm and SPIRE 250, 350, and 500 μm observations from the Hi-GAL survey of the Galactic plane. The focus of this study is to identify the embedded massive star-forming population within G305, by combining far-infrared data with radio continuum, H2O maser, methanolmaser,MIPS, and Red MSX Source survey data available from previous studies. From this sample we identify some 16 candidate associations are identified as embedded massive star-forming regions, and derive a two-selection colour criterion from this sample of log(F70/F500)! 1 and log(F160/F350)! 1.6 to identify an additional 31 embedded massive star candidates with no associated starformation tracers. Using this result, we are able to derive a star formation rate (SFR) of 0.01 - 0.02 M! yr−1. Comparing this resolved star formation rate, to extragalactic star formation rate tracers (based on the Kennicutt-Schmidt relation), we find the star formation activity is underestimated by a factor of !2 in comparison to the SFR derived from the YSO population. By next combining data available from 2MASS and VVV, Spitzer GLIMPSE and MIPSGAL, MSX, and Herschel Hi-GAL, we are able to identify the low-, to intermediate-mass YSOs present within the complex. Employing a series of stringent colour selection criteria and fitting reddened stellar atmosphere models, we are able remove a significant amount of contaminating sources from our sample, leaving us with a highly reliable sample of some 599 candidate YSOs. From this sample, we derive a present-day SFR of 0.005±0.001M! yr−1, and find the YSOmass function (YMF) of G305 to be significantly steeper than the standard Salpeter-Kroupa IMF. We find evidence of mass segregation towards G305, with a significant variation of the YMF both with the active star-forming region, and the outer region. The spatial distribution, and age gradient, of our 601 candidate YSOs also seem to rule out the scenario of propagating star formation within G305, with a more likely scenario of punctuated star formation over the lifetime of the complex.
        Publication date
        2013-07-30
        Published version
        https://doi.org/10.18745/th.13732
        Other links
        http://hdl.handle.net/2299/13732
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan