University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Experimental cross sections of Ho 165 (α,n) Tm 168 and Er 166 (α,n) Yb 169 for optical potential studies relevant for the astrophysical γ process

        View/Open
        Final Accepted Version (PDF, 402Kb)
        Author
        Glorius, J.
        Sonnabend, K.
        Görres, J.
        Robertson, D.
        Knörzer, M.
        Kontos, A.
        Rauscher, T.
        Reifarth, R.
        Sauerwein, A.
        Stech, E.
        Tan, W.
        Thomas, T.
        Wiescher, M.
        Attention
        2299/13963
        Abstract
        Background: Optical potentials are crucial ingredients for the prediction of nuclear reaction rates needed in simulations of the astrophysical γ process. Associated uncertainties are particularly large for reactions involving α particles. This includes (γ,α) reactions which are of special importance in the γ process. Purpose: The measurement of (α,n) reactions allows for an optimization of currently used α-nucleus potentials. The reactions Ho165(α,n) and Er166(α,n) probe the optical model in a mass region where γ process calculations exhibit an underproduction of p nuclei which is not yet understood. Method: To investigate the energy-dependent cross sections of the reactions Ho165(α,n) and Er166(α,n) close to the reaction threshold, self-supporting metallic foils were irradiated with α particles using the FN tandem Van de Graaff accelerator at the University of Notre Dame. The induced activity was determined afterwards by monitoring the specific β-decay channels. Results: Hauser-Feshbach predictions with a widely used global α potential describe the data well at energies where the cross sections are almost exclusively sensitive to the α widths. Increasing discrepancies appear towards the reaction threshold at lower energy. Conclusions: The tested global α potential is suitable at energies above 14 MeV, while a modification seems necessary close to the reaction threshold. Since the γ and neutron widths show non-negligible impact on the predictions, complementary data are required to judge whether or not the discrepancies found can be solely assigned to the α width. © 2014 American Physical Society.
        Publication date
        2014-06-30
        Published in
        Physical Review C
        Published version
        https://doi.org/10.1103/PhysRevC.89.065808
        Other links
        http://hdl.handle.net/2299/13963
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan