Show simple item record

dc.contributor.authorAbdelmotaleb, Ahmed
dc.contributor.authorDavey, N.
dc.contributor.authorSchilstra, M.
dc.contributor.authorSteuber, Volker
dc.contributor.authorWrobel, Borys
dc.contributor.editorSayama, Hiroki
dc.date.accessioned2014-09-08T09:45:49Z
dc.date.available2014-09-08T09:45:49Z
dc.date.issued2014
dc.identifier.citationAbdelmotaleb , A , Davey , N , Schilstra , M , Steuber , V & Wrobel , B 2014 , Evolving spiking neural networks for temporal pattern recognition in the presence of noise . in H Sayama (ed.) , Artificial Life 2014 : Procs of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems . MIT Press , pp. 965-972 , Artificial Life 2014 , New York , United States , 30/07/14 . https://doi.org/10.7551/978-0-262-32621-6-ch157
dc.identifier.citationconference
dc.identifier.urihttp://hdl.handle.net/2299/14427
dc.descriptionCreative Commons - Attribution-NonCommercial-NoDerivs 3.0 United States
dc.description.abstractNervous systems of biological organisms use temporal patterns of spikes to encode sensory input, but the mechanisms that underlie the recognition of such patterns are unclear. In the present work, we explore how networks of spiking neurons can be evolved to recognize temporal input patterns without being able to adjust signal conduction delays. We evolve the networks with GReaNs, an artificial life platform that encodes the topology of the network (and the weights of connections) in a fashion inspired by the encoding of gene regulatory networks in biological genomes. The number of computational nodes or connections is not limited in GReaNs, but here we limit the size of the networks to analyze the functioning of the networks and the effect of network size on the evolvability of robustness to noise. Our results show that even very small networks of spiking neurons can perform temporal pattern recognition in the presence of input noiseen
dc.format.extent920395
dc.language.isoeng
dc.publisherMIT Press
dc.relation.ispartofArtificial Life 2014
dc.titleEvolving spiking neural networks for temporal pattern recognition in the presence of noiseen
dc.contributor.institutionSchool of Computer Science
dc.contributor.institutionCentre for Computer Science and Informatics Research
dc.contributor.institutionScience & Technology Research Institute
dc.contributor.institutionBiocomputation Research Group
dc.contributor.institutionDepartment of Computer Science
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionCentre of Data Innovation Research
dc.contributor.institutionCentre for Future Societies Research
dc.identifier.urlhttp://mitpress.mit.edu/sites/default/files/titles/free_download/9780262326216_Artificial_Life_2014.pdf
rioxxterms.versionofrecord10.7551/978-0-262-32621-6-ch157
rioxxterms.typeOther
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record