University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item

        Shock-excited molecular hydrogen in the outflows of post-asymptotic giant branch stars

        View/Open
        Download fulltext (PDF, 13Mb)
        Author
        Forde, Kieran Patrick
        Attention
        2299/14448
        Abstract
        Since the identi cation of proto-planetary nebulae (PPNe) as transition objects between the asymptotic giant branch stars and planetary nebulae more than two decades ago, astronomers have attempted to characterise these exciting objects. Today many questions still elude a conclusive answer, partly due to the sheer diversity observed within this small subset of stellar objects, and partly due to the low numbers detected. Fortunately, many of these objects display a rich spectrum of emission/absorption lines that can be used as diagnostics for these nebulae. This dissertation presents a study of six PPNe using the relatively new (at NIR wavelengths) integral eld spectroscopy technique. This method has allowed the investigation of distinct regions of these nebulae, and in certain cases the application of magneto-hydrodynamic shock models to the data. The goal of this research has been to investigate the evolution of PPNe by detailed examination of a small sample of objects consisting of a full range of evolutionary types. Near-IR ro-vibrational lines were employed as the primary tool to tackle this problem. In all six sources the 1!0S(1) line is used to map the spatial extent of the H2. In three of these objects the maps represent the rst images of their H2 emission nebulae. In the case of the earliest-type object (IRAS 14331-6435) in this sample, the line map gives the rst image of its nebula at any wavelength. In the only M-type object (OH 231.8+4.2) in the sample, high-velocity H2 is detected in discrete clumps along the edges of the bipolar out ow, while a possible ring of slower moving H2 is found around the equatorial region. This is the rst detection of H2 in such a late-type object but due its peculiarities, it is possibly not representative of what is expected of M-type objects. In IRAS 19500-1709, an intermediate-type object, the line map shows the H2 emission to originate in clumpy structures along the edges of a bipolar shell/out ow. The remaining three objects have all been the subject of previous studies but in each case new H2 lines are detected in this work along with other emission lines (Mg ii, Na i & CO). In the case of IRAS 16594-4656, MHD shock models have been used to determine the gas density and shock velocity. Two new python modules/classes have been written. The rst one to deal with the data cubes, extract ux measurements, rebin regions of interest, and produce line maps. The second class allows the easy calculation of many important parameters, for example, excitation temperatures, column density ratio values, extinction estimates from several line-pairs, column density values, and total mass of the H2. The class also allows the production of input les for the shock tting procedure, and simulated shocks for testing this tting process. A new framework to t NIR shock models to data has been developed, employing Monte Carlo techniques and the extensive computing cluster at the University of Hertfordshire (UH). This method builds on the approach used by many other authors, with the added advantages that this framework provides a method of correctly sampling the shock model parameter space, and providing error estimates on the model t. Using this approach, data from IRAS 16594-4656 have been successfully modelled using the shock models. A full description of this class of stellar objects from such a small sample is not possible due to their diverse nature. Although H2 was detected across the full spectral vi range of post-AGB objects, the phase at which H2 emission begins is still not clear. The only M-type object in this work is a peculiar object and may not be representative of a typical post-AGB star. The H2 PPNe appear to be located at lower Galactic latitudes (b 20 ) than the total PPNe population, possibly pointing to an above average mass and hence younger age of these objects.
        Publication date
        2014-07-02
        Published version
        https://doi.org/10.18745/th.14448
        https://doi.org/10.18745/th.14448
        Other links
        http://hdl.handle.net/2299/14448
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan