Show simple item record

dc.contributor.authorRauscher, T.
dc.date.accessioned2014-11-06T14:59:25Z
dc.date.available2014-11-06T14:59:25Z
dc.date.issued2012-08
dc.identifier.citationRauscher , T 2012 , Possible solution to the alpha-potential mystery in the gamma-process and the Nd/Sm ratio in meteorites . in Procs XII Int Symposium on Nuclei in the Cosmos . , 052 , Proceedings of Science , SISSA . < http://pos.sissa.it/archive/conferences/146/052/NIC%20XII_052.pdf >
dc.identifier.issn1824-8039
dc.identifier.otherPURE: 1678793
dc.identifier.otherPURE UUID: 94a1a687-a0aa-434a-bd38-d5b2fb7d1da8
dc.identifier.urihttp://hdl.handle.net/2299/14700
dc.descriptionCopyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
dc.description.abstractThe 146Sm/144Sm ratio in the early solar system has been constrained by Nd/Sm isotope ratios in meteoritic material. Predictions of 146Sm and 144Sm production in the gamma-process in massive stars are at odds with these constraints and this is partly due to deficiences in the prediction of the reaction rates involved. The production ratio depends almost exclusively on the (gamma,n)/(gamma,alpha) branching at 148Gd. A measurement of 144Sm(alpha,gamma)148Gd at low energy had discovered considerable discrepancies between cross section predictions and the data. Although this reaction cross section mainly depends on the optical alpha+nucleus potential, no global optical potential has yet been found which can consistently describe the results of this and similar alpha-induced reactions. The untypically large deviation in 144Sm(alpha,gamma) can be explained, however, by low-energy Coulomb excitation which is competing with compound nucleus formation at very low energies. Low-energy (alpha,gamma) and (alpha,n) data on other nuclei can also be consistently explained in this way. Since Coulomb excitation does not affect alpha-emission, the 148Gd(gamma,alpha) rate is much higher than previously assumed. This leads to very small 146Sm/144Sm stellar production ratios, in even more pronounced conflict with the meteorite data.en
dc.language.isoeng
dc.publisherSISSA
dc.relation.ispartofProcs XII Int Symposium on Nuclei in the Cosmos
dc.relation.ispartofseriesProceedings of Science
dc.titlePossible solution to the alpha-potential mystery in the gamma-process and the Nd/Sm ratio in meteoritesen
dc.contributor.institutionCentre for Astrophysics Research
dc.identifier.urlhttp://pos.sissa.it/archive/conferences/146/052/NIC%20XII_052.pdf
rioxxterms.versionVoR
rioxxterms.typeOther
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record