University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        SASP: targeted delivery to Gram-negative pathogens

        Author
        Wang, H.
        Hatzixanthis, K.
        Barnard, A.
        Shah, R.
        Saveri, E.
        Pitts, K.
        Piwowarczyk, D.
        Patil, G.
        Baines, Simon D.
        Wilkinson, A.
        Fairhead, H.
        Attention
        2299/14739
        Abstract
        Background: Gram-negative bacteria are responsible for significant morbidity and mortality worldwide. Multi-drug resistance emergence has rendered many therapies ineffective. New therapies are urgently required to widen treatment options. SASPject technology delivers small acid-soluble spore protein (SASP) genes to target bacteria using modified bacteriophage vectors, resulting in rapid killing. SASP is a unique antibacterial protein that non-specifically binds bacterial DNA and halts DNA replication and gene expression. In this study we present the first data for a Gram-negative targeted SASPject vector (PT3.1) which shows in vitro activity against Escherichia coli (EC) and Pseudomonas aeruginosa (PA). Methods: We evaluated efficacy of SASPject PT3.1 vs. EC (N=5) & PA (N=5) using a microtitre tray fixed duration (3 h) kill method. Log-phase cultures (1x105 cfu/mL) were prepared in supplemented (MgSO4 & CaCl2, 5 mM; glucose, 0.1% w/v) LB broth (LBC) & exposed to 2x108 plaque forming units (pfu)/mL of PT3.1. PT3.1 antimicrobial activity was determined using agar-based culture following incubation (37oC). Additionally, rate of PT3.1 kill was determined using a kill-curve technique; a selection of EC & PA strains from the fixed duration kill study were evaluated & bacterial viable counts determined over 3 h on LBC agar. Results: SASPject PT3.1 elicited good antimicrobial activity vs. EC & PA evaluated in this study; the median reduction in viable counts for PT3.1-treated cultures in the fixed 3 h kill was 99.1%. Kill curve data suggested rapid EC & PA killing; viable counts (log10 cfu/mL range) of PT3.1-treated cultures were 2.36->4.01, 3.04-4.06, and 3.40-4.16 lower than corresponding controls after 1, 2, and 3 h respectively. Conclusions: 1. SASPject PT3.1 demonstrated good antimicrobial activity vs. EC & PA evaluated in this study in a fixed 3 h exposure period 2. PT3.1 was bactericidal (≥3 log10 cfu/mL decline) vs. 3 of 4 isolates (1EC & 2PA) evaluated in time-kill curves after 1 h and against all isolates after 2 h 3. Further evaluations of Gram-negative SASPject phage are warranted
        Publication date
        2011-09
        Other links
        http://hdl.handle.net/2299/14739
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan