University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Reaction rate sensitivity of 44Ti production in massive stars and implications of a thick target yield measurement for 40Ca(alpha,gamma)44Ti

        View/Open
        NIC_XI_240.pdf (PDF, 601Kb)
        Author
        Hoffman, R. D.
        Sheets, S. A.
        Burke, J. T.
        Scielzo, N. D.
        Rauscher, T.
        Attention
        2299/14760
        Abstract
        The dynamic synergy between observation, theory, and experiment developed over many years around the field of gamma-ray astronomy has as its ultimate goal observations of specific radionuclides informing our understanding of stellar explosions and the theoretical models that predict nucleosynthesis. Observations of 56,57Ni and their decay products 56,57Co are used in many ways to constrain our current models of the core collapse mechanism. The radionuclide 44Ti (tau1/2 = 58.9 +- 0.3 yr), made in the same explosive environment but in much lower amounts compared to the very abundant nickel isotopes, is hoped to one day serve as an even more sensitive diagnostic and a valuable probe to the conditions extant in some of the deepest layers to be ejected. We [1] investigate 44Ti nucleosynthesis in adiabatic expansions from peak conditions drawn from a model for Cassiopia A and determine variations due to experimental uncertainties in two key reaction rates. We find that the current uncertainty in these two rates could lead to as large a variation in 44Ti synthesis as that produced by different treatments of stellar physics in historical models of SNII.
        Publication date
        2011-01
        Published in
        Procs 11th Symposium on Nuclei in the Cosmos (NIC XI)
        Other links
        http://hdl.handle.net/2299/14760
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan