University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The high-force region of the force-velocity relation in frog skinned muscle fibres

        Author
        Lou, Fang
        Sun, Y-B.
        Attention
        2299/15535
        Abstract
        The force-velocity relation has been studied during calcium-induced contracture of chemically skinned fibres from the semitendinosus muscle of Rana temporaria with special interest focused on the high-load region. The force-velocity curve was hyperbolic at low and intermediate loads but departed below the hyperbola as the load exceeded about 80% of the isometric force (P0). The force intercept (P*0) of the hyperbola derived from force-velocity data truncated at 0.78 P0 was higher than P0 (P*0/P0 = 1.14 +/- 0.04). At submaximum Ca2+ concentration, where the isometric force of the fibre was 65-75% of the maximum value, the force-velocity data still departed below the hyperbola at high loads (P*0/P0 = 1.09 +/- 0.04). The departure of the force-velocity data from the hyperbola at high force was also found at high ionic strength (250 mM), but not at low ionic strength (150 mM) (P*0/P0 = 1.09 +/- 0.03 and 0.98 +/- 0.03, respectively). The force-velocity relations derived under different experimental conditions could be fitted well by a modified version of Hill's (1938) hyperbolic equation (Edman 1988) using similar numerical values of k1 and k2 in the latter equation. The results indicate that the force-velocity relation in skinned muscle fibres is biphasic, and that the two curvatures, as in intact muscle fibres, are closely related to one another. Furthermore the evidence supports the hypothesis that the altered shape of the force-velocity relation at high loads is not related to the force level per se but rather to the speed of shortening of the contractile system (Edman 1992).
        Publication date
        1993-07
        Published in
        Acta Physiologica Scandinavica
        Published version
        https://doi.org/10.1111/j.1748-1716.1993.tb09555.x
        Other links
        http://hdl.handle.net/2299/15535
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan