University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Measurement of (α,n) reaction cross sections of erbium isotopes for testing astrophysical rate predictions

        View/Open
        Final Accepted Version (PDF, 284Kb)
        Author
        Kiss, G. G.
        Szücs, T.
        Rauscher, T.
        Török, Zs
        Csedreki, L.
        Fülöp, Zs
        Gyürky, Gy
        Halász, Z.
        Attention
        2299/15910
        Abstract
        The γ-process in core-collapse and/or type Ia supernova explosions is thought to explain the origin of the majority of the so-called p nuclei (the 35 proton-rich isotopes between Se and Hg). Reaction rates for γ-process reaction network studies have to be predicted using Hauser-Feshbach statistical model calculations. Recent investigations have shown problems in the prediction of α-widths at astrophysical energies which are an essential input for the statistical model. It has an impact on the reliability of abundance predictions in the upper mass range of the p nuclei. With the measurement of the <sup>164,166</sup>Er(α,n)<sup>167,169</sup>Yb reaction cross sections at energies close to the astrophysically relevant energy range we tested the recently suggested low energy modification of the α+nucleus optical potential in a mass region where γ-process calculations exhibit an underproduction of the p nuclei. Using the same optical potential for the α-width which was derived from combined <sup>162</sup>Er(α,n) and <sup>162</sup>Er(α,γ) measurement makes it plausible that a low-energy modification of the optical α+nucleus potential is needed.
        Publication date
        2015-05-01
        Published in
        Journal of Physics G: Nuclear and Particle Physics
        Published version
        https://doi.org/10.1088/0954-3899/42/5/055103
        Other links
        http://hdl.handle.net/2299/15910
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan