University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Expression and functionality of P-glycoprotein in human bronchial epithelial cells in vitro

        Author
        Hutter, Victoria
        Hilgendorf, Constanze
        Cooper, Anne
        Zann, Vanessa
        Pritchard, David
        Bosquillon, Cynthia
        Attention
        2299/15927
        Abstract
        P-glycoprotein (P-gp) is expressed in normal tissues with barrier functions where it participates in cell defence mechanisms (Huls, M. et al. J Pharm Exp Ther 2009; 328:3-9). Its presence in the bronchial epithelium and role in the lung protection against inhaled toxicants has yet to be elucidated. The human bronchial epithelial cell line Calu-3 and normal human bronchial epithelial (NHBE) cells were cultured at an air-liquid interface on Transwell® inserts for 21 days. P-gp expression was evaluated by quantitative polymerase chain reaction and its functionality was assessed by permeability measurements using the established substrate 3H-digoxin either alone or in the presence of chemical or biomolecular inhibitors. P-gp was absent in NHBE cells and moderately expressed in Calu-3 cells. Net secretory transport of 3H-digoxin was observed in both models. This was reduced at 4°C and in the presence of the selective but non specific P-gp inhibitor PSC833 and the multidrug resistance protein (MRP) inhibitor MK571. The P-gp specific antibody inhibitor UIC2 and the metabolic inhibitors sodium azide and sodium dichloroacetate had no effect on 3H-digoxin transport in Calu-3 cells. The presence of active transport mechanisms in cultures of human bronchial epithelial cells was demonstrated, although they differed between the models tested. P-gp was not detected in NHBE cells, in line with observed low gene expression in human lung tissue (Bleasby, K. et al. Xenobiotica 2006; 36:963-988). The involvement of P-gp could not be confirmed and the transporter(s) responsible for 3H-digoxin asymmetric broncho-epithelial permeability remain(s) to be identified.
        Publication date
        2011-09
        Published in
        European Respiratory Journal
        Other links
        http://hdl.handle.net/2299/15927
        Relations
        School of Life and Medical Sciences
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan