University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010

        Author
        Ansmann, A.
        Tesche, Matthias
        Seifert, P.
        Gross, Silke
        Freudenthaler, V.
        Apituley, A.
        Wilson, K. M.
        Serikov, I.
        Linné, H.
        Heinold, B.
        Hiebsch, A.
        Schnell, F.
        Schmidt, J.
        Mattis, I.
        Wandinger, U.
        Wiegner, M.
        Attention
        2299/16226
        Abstract
        A combined lidar-photometer method that permits the retrieval of vertical profiles of ash and non-ash (fine-mode) particle mass concentrations is presented. By using a polarization lidar, the contributions of non-ash and ash particles to total particle backscattering and extinction are separated. Sun photometer measurements of the ratio of particle volume concentration to particle optical thickness (AOT) for fine and coarse mode are then used to convert the non-ash and ash extinction coefficients into respective fine-mode and ash particle mass concentrations. The method is applied to European Aerosol Research Lidar Network (EARLINET) and Aerosol Robotic Network (AERONET) Sun photometer observations of volcanic aerosol layers at Cabauw, Netherlands, and Hamburg, Munich, and Leipzig, Germany, after the strong eruptions of the Icelandic Eyjafjallajökul volcano in April and May 2010. A consistent picture in terms of photometer-derived fine- and coarse-mode AOTs and lidar-derived non-ash and ash extinction profiles is found. The good agreement between the fine- to coarse-mode AOT ratio and non-ash to ash AOT ratio (<10% difference) in several cases corroborates the usefulness of the new retrieval technique. The main phases of the evolution of the volcanic aerosol layers over central Europe from 16 April to 17 May 2010 are characterized in terms of optical properties and mass concentrations of fine fraction and ash particles. Maximum coarse-mode 500 nm AOTs were of the order of 1.0-1.2. Ash concentrations and column mass loads reached maximum values around 1500 μg/m3 and 1750 mg/m2, respectively, on 16-17 April 2010. In May 2010, the maximum ash loads were lower by at least 50%. A critical aspect of the entire retrieval scheme is the high uncertainty in the mass-to-extinction conversion for fresh volcanic plumes with an unknown concentration of particles with radii >15 μm.
        Publication date
        2011-01-01
        Published in
        Journal of Geophysical Research: Atmospheres
        Published version
        https://doi.org/10.1029/2010JD015567
        Other links
        http://hdl.handle.net/2299/16226
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan