Show simple item record

dc.contributor.authorCheng, Y. F.
dc.contributor.authorWiedensohler, A.
dc.contributor.authorEichler, H.
dc.contributor.authorHeintzenberg, J.
dc.contributor.authorTesche, Matthias
dc.contributor.authorAnsmann, A.
dc.contributor.authorWendisch, M.
dc.contributor.authorSu, H.
dc.contributor.authorAlthausen, D.
dc.contributor.authorHerrmann, H.
dc.contributor.authorGnauk, T.
dc.contributor.authorBrüggemann, E.
dc.contributor.authorHu, M.
dc.contributor.authorZhang, Y. H.
dc.date.accessioned2015-08-12T19:26:03Z
dc.date.available2015-08-12T19:26:03Z
dc.date.issued2008-08
dc.identifier.citationCheng , Y F , Wiedensohler , A , Eichler , H , Heintzenberg , J , Tesche , M , Ansmann , A , Wendisch , M , Su , H , Althausen , D , Herrmann , H , Gnauk , T , Brüggemann , E , Hu , M & Zhang , Y H 2008 , ' Relative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China : An observation based numerical study ' , Atmospheric Environment , vol. 42 , no. 25 , pp. 6373-6397 . https://doi.org/10.1016/j.atmosenv.2008.04.009
dc.identifier.issn1352-2310
dc.identifier.otherPURE: 8758089
dc.identifier.otherPURE UUID: 8d54fc23-8cec-47ba-9a54-a19de2e1bfdd
dc.identifier.otherScopus: 49449094991
dc.identifier.urihttp://hdl.handle.net/2299/16235
dc.description.abstractIn a numerical study, influences of relative humidity (RH) on aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken (XK) in Pearl River Delta of China are investigated based on the observed particle hygroscopic growth (fg (Dp, RH)) and the relevant aerosol physical and chemical properties. The model is validated by comparing the simulated ambient extinction coefficients with those measured by a Raman LIDAR. At 550 nm, the scattering coefficient increases with a factor of 1.54 and 2.31 at a RH increase from 30% to 80% and 90%, respectively. This ratio is mainly controlled by fg, and generally increases with increasing wavelength and decreases with increasing particle effective diameter. From RH 30% to 90%, the average single scattering albedo (ω0) changes from 0.77 to 0.88, 0.91 to 0.97, and 0.86 to 0.94 for internal, respectively, external mixtures, and the retrieved mixing state of the elemental carbon (EC) at XK. The assumption that the absorption coefficient does not change upon humidification alone can introduce an overestimation of ω0 of 0.02 (∼ 5 %) at RH 90% for an internal mixture. However, accounting for the EC mixing state at XK, this error is only about 0.3%. The mean upscatter fraction (over(β, -)) is evaluated as 0.233 at RH 30% with a 30% decrease to 0.191 at RH 90%. The estimation of aerosol direct radiative forcing (Δ FR) in the surface boundary layer at XK strongly depends on RH and the EC mixing state. The critical ω0 at XK is estimated to be about 0.77-0.80 at 550 nm. Assuming an internal or coated mixture of EC, no pronounced Δ FR is observed when RH < 60 %, whereas a cooling effect arises while RH > 60 %. Under the actual EC mixing conditions at XK, the effect of Δ FR is cooling. Over 40% of this cooling effect is contributed by water at RH 80% and Δ FR at RH 90% exceeds that at RH 30% by about a factor of 2.7.en
dc.format.extent25
dc.language.isoeng
dc.relation.ispartofAtmospheric Environment
dc.subjectAerosol optical property
dc.subjectDirect radiative forcing
dc.subjectPRD of China
dc.subjectRelative humidity
dc.subjectAtmospheric Science
dc.subjectEnvironmental Science(all)
dc.subjectPollution
dc.titleRelative humidity dependence of aerosol optical properties and direct radiative forcing in the surface boundary layer at Xinken in Pearl River Delta of China : An observation based numerical studyen
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
rioxxterms.versionofrecordhttps://doi.org/10.1016/j.atmosenv.2008.04.009
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record