Show simple item record

dc.contributor.authorEgri-Nagy, Attila
dc.contributor.authorNehaniv, C.L.
dc.date.accessioned2015-10-08T13:47:04Z
dc.date.available2015-10-08T13:47:04Z
dc.date.issued2015-03-24
dc.identifier.citationEgri-Nagy , A & Nehaniv , C L 2015 , ' Symmetries of Automata ' , Algebra and Discrete Mathematics , vol. 19 , no. 1 , pp. 48-57 .
dc.identifier.issn1726-3255
dc.identifier.otherPURE: 8177053
dc.identifier.otherPURE UUID: 89ff6613-678d-471d-bdd6-854cf7c168c5
dc.identifier.otherScopus: 84930164281
dc.identifier.urihttp://hdl.handle.net/2299/16515
dc.descriptionContent in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.
dc.description.abstractFor a given reachable automaton A, we prove that the (state-)endomorphism monoid End(A) divides its characteristic monoid M(A). Hence so does its (state-)automorphism group Aut(A), and, for finite A, Aut(A) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group G of A, a finite automaton A (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of M(A), namely the symmetry group G and the quotient of M(A) induced by the action of G. Moreover, this division is an embedding if M(A) is transitive on states of A. For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element.en
dc.format.extent10
dc.language.isoeng
dc.relation.ispartofAlgebra and Discrete Mathematics
dc.rightsOpen
dc.subject2010 Mathematics Subject Classification: 20B25, 20E22, 20M20, 20M35, 68Q70.
dc.titleSymmetries of Automataen
dc.contributor.institutionSchool of Computer Science
dc.contributor.institutionScience & Technology Research Institute
dc.contributor.institutionCentre for Computer Science and Informatics Research
dc.description.statusPeer reviewed
dc.identifier.urlhttp://adm.luguniv.edu.ua/
dc.identifier.urlhttp://adm.luguniv.edu.ua/downloads/issues/2015/N1/adm-n1(2015)-6.pdf
dc.identifier.urlhttp://mi.mathnet.ru/eng/adm/v19/i1/p48
dc.relation.schoolSchool of Computer Science
dc.description.versiontypeFinal Published version
dcterms.dateAccepted2015-03-24
rioxxterms.versionAM
rioxxterms.versionVoR
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue
herts.rights.accesstypeOpen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record