University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Effects of advanced injection strategies on the in-cylinder air-fuel homogeneity of diesel engines

        View/Open
        Dimitriou_et_al_Accepted_Manuscript.pdf (PDF, 1Mb)
        Author
        Dimitriou, Pavlos
        Peng, Jun
        Wang, Weiji
        Gao, Bo
        Wellers, Matthias
        Attention
        2299/16535
        Abstract
        The air–fuel mixing quality in the combustion chamber of a diesel engine is very critical for controlling the ignition and the combustion quality of direct-injection diesel engines. With a view to understanding the air–fuel mixing behaviour and the effect of the mixture quality on the emissions formation, an innovative approach with a new quantitative factor of the in-cylinder air–fuel homogeneity, called the homogeneity factor, was used, and its characteristics under various injection conditions were analysed with computational fluid dynamics simulations. By investigating the effect of advanced injection strategies on the homogeneity of the mixture and the emissions production, the study suggested that the homogeneity factor is greatly affected by the pulse number of injections, the injection timing and the dwell angle between two injections. The more advanced the injection taking place in the cylinder, the earlier the air–fuel mixing quality reaches a high level. Although the homogeneity factor is not sufficiently precise by itself to reflect the emissions formation, the results demonstrated that most often, the higher the homogeneity available in the cylinder, the more nitrogen oxides and the less soot were formed
        Publication date
        2015-02-01
        Published in
        Proceedings of the Institution of Mechanical Engineers, Part D : Journal of Automobile Engineering
        Published version
        https://doi.org/10.1177/0954407014540900
        Other links
        http://hdl.handle.net/2299/16535
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan