University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item

        Cosmological Simulations with AGN Feedback

        View/Open
        Download fulltext (PDF, 36Mb)
        Author
        Taylor, Philip
        Attention
        2299/16573
        Abstract
        We implement a model for, and study the effects of, AGN feedback in cosmological hydrodynamical simulations. In our model, black holes form high-density, primordial gas, to imitate the likely channels of black hole formation in the early Universe. We find that a black hole seed mass of 102−3h−1M⊙ is required to produce simulations that match the cosmic star formation rate density, and present-day black hole mass – velocity dispersion and galaxy size – velocity dispersion relations. We therefore suggest that Population iii stars can be the progenitors of the super-massive black holes seen today. Using our fiducial model, we run two large simulations ((25h−1 Mpc)3), one with and one without AGN feedback. With these, we follow the population of galaxies that forms across cosmic time, and find that the inclusion of AGN feedback improves the agreement of simulated and observed galaxy properties, such as the mass and luminosity functions. This agreement is best at z = 0, and fairly good out to z = 2−3. Evidence for downsizing in the evolution of galaxies is found, both in the present-day colour–magnitude and [α/Fe]–velocity dispersion relations, and by the fact that high-mass galaxies attain their present-day metallicity earlier and faster than do low-mass ones. With our hydrodynamical simulations, we can also investigate the internal structure of galaxies, and look at the effects of galaxy mergers and AGN feedback on the stellar and gas-phase metallicity gradients of galaxies. Stellar metallicity gradients are found to be sensitive to galaxy mergers, while gas-phase metallicity gradients are more affected by AGN activity. This suggests that simultaneous measurements of these two quantities can help disentangle the actions of mergers and AGN feedback on a galaxy’s history. Finally, we develop a new method to identify massive AGN-driven outflows from the most massive simulated galaxy. These events cause the intra-cluster medium to be hotter and more chemically enriched compared to the simulation without AGN feedback, and therefore AGN feedback may be required in order to attain the metallicities observed in clusters.
        Publication date
        2016-02-22
        Published version
        https://doi.org/10.18745/th.16573
        Other links
        http://hdl.handle.net/2299/16573
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan