University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Non-parametric algorithmic generation of neuronal morphologies

        Author
        Torben-Nielsen, Benjamin
        Vanderlooy, Stijn
        Postma, Eric O.
        Attention
        2299/16660
        Abstract
        Generation algorithms allow for the generation of Virtual Neurons (VNs) from a small set of morphological properties. The set describes the morphological properties of real neurons in terms of statistical descriptors such as the number of branches and segment lengths (among others). The majority of reconstruction algorithms use the observed properties to estimate the parameters of a priori fixed probability distributions in order to construct statistical descriptors that fit well with the observed data. In this article, we present a non-parametric generation algorithm based on kernel density estimators (KDEs). The new algorithm is called KDE-NEURON: and has three advantages over parametric reconstruction algorithms: (1) no a priori specifications about the distributions underlying the real data, (2) peculiarities in the biological data will be reflected in the VNs, and (3) ability to reconstruct different cell types. We experimentally generated motor neurons and granule cells, and statistically validated the obtained results. Moreover, we assessed the quality of the prototype data set and observed that our generated neurons are as good as the prototype data in terms of the used statistical descriptors. The opportunities and limitations of data-driven algorithmic reconstruction of neurons are discussed.
        Publication date
        2008-12
        Published in
        Neuroinformatics
        Published version
        https://doi.org/10.1007/s12021-008-9026-x
        Other links
        http://hdl.handle.net/2299/16660
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan