University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Identification of environmentally stable QTL for resistance against Leptosphaeria maculans in oilseed rape (Brassica napus)

        View/Open
        907217.pdf (PDF, 1Mb)
        Author
        Huang, Yongju
        Jestin, C.
        Welham, S.J.
        King, Graham
        Manzanares-Dauleux, Maria
        Fitt, Bruce D.L.
        Delourme, Regine
        Attention
        2299/16765
        Abstract
        Phoma stem canker, caused by Leptosphaeria maculans, is a disease of world-wide importance on oilseed rape (Brassica napus). Quantitative trait locus (QTL) mediated resistance against L. maculans in B. napus is considered to be race non-specific and potentially durable. Identification and evaluation of QTL for resistance to L. maculans is important for breeding oilseed rape cultivars with durable resistance. An oilseed rape mapping population was used to detect QTL for resistance against L. maculans in five winter oilseed rape field experiments under different environments. A total of 17 QTL involved in ‘field’ quantitative resistance against L. maculans were detected and collectively explained 51% of the phenotypic variation. The number of QTL detected in each experiment ranged from two to nine and individual QTL explained 2 to 25% of the phenotypic variation. QTL × environment interaction analysis suggested that six of these QTL were less sensitive to environmental factors, so they were considered to be stable QTL. Markers linked to these stable QTL will be valuable for selection to breed for effective resistance against L. maculans in different environments, which will contribute to sustainable management of the disease.
        Publication date
        2016-01-31
        Published in
        TAG: Theoretical and Applied Genetics
        Published version
        https://doi.org/10.1007/s00122-015-2620-z
        Other links
        http://hdl.handle.net/2299/16765
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan