University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item

        Continuous Steepest Descent Path for Traversing Non-Convex Regions

        View/Open
        Download fulltext (PDF, 1Mb)
        Author
        Beddiaf, Salah
        Attention
        2299/17175
        Abstract
        In this thesis, we investigate methods of finding a local minimum for unconstrained problems of non-convex functions with n variables, by following the solution curve of a system of ordinary differential equations. The motivation for this was the fact that existing methods (e.g. those based on Newton methods with line search) sometimes terminate at a non-stationary point when applied to functions f(x) that do not a have positive-definite Hessian (i.e. ∇2f ≻ 0) for all x. Even when methods terminate at a stationary point it could be a saddle or maximum rather than a minimum. The only method which makes intuitive sense in non-convex region is the trust region approach where we seek a step which minimises a quadratic model subject to a restriction on the two-norm of the step size. This gives a well-defined search direction but at the expense of a costly evaluation. The algorithms derived in this thesis are gradient based methods which require systems of equations to be solved at each step but which do not use a line search in the usual sense. Progress along the Continuous Steepest Descent Path (CSDP) is governed both by the decrease in the function value and measures of accuracy of a local quadratic model. Numerical results on specially constructed test problems and a number of standard test problems from CUTEr [38] show that the approaches we have considered are more promising when compared with routines in the optimization tool box of MATLAB [46], namely the trust region method and the quasi-Newton method. In particular, they perform well in comparison with the, superficially similar, gradient-flow method proposed by Behrman [7].
        Publication date
        2016-05-12
        Published version
        https://doi.org/10.18745/th.17175
        Other links
        http://hdl.handle.net/2299/17175
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan