Show simple item record

dc.contributor.authorCarvalho, Catarina
dc.contributor.authorGray, Robert
dc.contributor.authorRuskuc, Nik
dc.date.accessioned2016-10-10T08:55:12Z
dc.date.available2016-10-10T08:55:12Z
dc.date.issued2011
dc.identifier.citationCarvalho , C , Gray , R & Ruskuc , N 2011 , ' Presentations of Inverse Semigroups their Kernels and Extensions ' , Journal of the Australian Mathematical Society , vol. 90 , no. 3 , pp. 289-316 . https://doi.org/10.1017/S1446788711001297
dc.identifier.issn1446-8107
dc.identifier.otherPURE: 777638
dc.identifier.otherPURE UUID: cdbb17c5-f324-433c-a1ef-8386e61a9783
dc.identifier.otherScopus: 84856402640
dc.identifier.otherORCID: /0000-0002-4648-7016/work/62748316
dc.identifier.urihttp://hdl.handle.net/2299/17260
dc.description.abstractLet S be an inverse semigroup and let π:S→T be a surjective homomorphism with kernel K. We show how to obtain a presentation for K from a presentation for S, and vice versa. We then investigate the relationship between the properties of S, K and T, focusing mainly on finiteness conditions. In particular we consider finite presentability, solubility of the word problem, residual finiteness, and the homological finiteness property FPn. Our results extend several classical results from combinatorial group theory concerning group extensions to inverse semigroups. Examples are also provided that highlight the differences with the special case of groups.en
dc.language.isoeng
dc.relation.ispartofJournal of the Australian Mathematical Society
dc.titlePresentations of Inverse Semigroups their Kernels and Extensionsen
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.contributor.institutionScience & Technology Research Institute
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=84856402640&partnerID=8YFLogxK
rioxxterms.versionSMUR
rioxxterms.versionofrecordhttps://doi.org/10.1017/S1446788711001297
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record