University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item

        Predicting the Absorption Rate of Chemicals Through Mammalian Skin Using Machine Learning Algorithms

        View/Open
        Download fulltext (PDF, 9Mb)
        Author
        Ashrafi, Parivash
        Attention
        2299/17310
        Abstract
        Machine learning (ML) methods have been applied to the analysis of a range of biological systems. This thesis evaluates the application of these methods to the problem domain of skin permeability. ML methods offer great potential in both predictive ability and their ability to provide mechanistic insight to, in this case, the phenomena of skin permeation. Historically, refining mathematical models used to predict percutaneous drug absorption has been thought of as a key factor in this field. Quantitative Structure-Activity Relationships (QSARs) models are used extensively for this purpose. However, advanced ML methods successfully outperform the traditional linear QSAR models. In this thesis, the application of ML methods to percutaneous absorption are investigated and evaluated. The major approach used in this thesis is Gaussian process (GP) regression method. This research seeks to enhance the prediction performance by using local non-linear models obtained from applying clustering algorithms. In addition, to increase the model’s quality, a kernel is generated based on both numerical chemical variables and categorical experimental descriptors. Monte Carlo algorithm is also employed to generate reliable models from variable data which is inevitable in biological experiments. The datasets used for this study are small and it may raise the over-fitting/under-fitting problem. In this research I attempt to find optimal values of skin permeability using GP optimisation algorithms within small datasets. Although these methods are applied here to the field of percutaneous absorption, it may be applied more broadly to any biological system.
        Publication date
        2016-11-10
        Published version
        https://doi.org/10.18745/th.17310
        https://doi.org/10.18745/th.17310
        Other links
        http://hdl.handle.net/2299/17310
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan