University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Ageing and gastrointestinal sensory function: altered colonic mechanosensory and chemosensory function in the aged mouse.

        View/Open
        Keating_et_al_2016_The_Journal_of_Physiology.pdf (PDF, 932Kb)
        Author
        Keating, Christopher
        Nochi, Linda
        Yu, Yang
        Donovan, Jemma
        Grundy, D
        Attention
        2299/17312
        Abstract
        Ageing has a profound effect upon gastrointestinal function through mechanisms that are poorly understood. Here we investigated the effect of age upon gastrointestinal sensory signalling pathways in order to address the mechanisms underlying these changes. In vitro mouse colonic and jejunal preparations with attached splanchnic and mesenteric nerves were used to study mechanosensory and chemosensory afferent function in 3-, 12- and 24-month-old C57BL/6 animals. Quantitative RT-PCR was used to investigate mRNA expression in colonic tissue and dorsal root ganglion (DRG) cells isolated from 3- and 24-month animals, and immunohistochemistry was used to quantify the number of 5-HT-expressing enterochromaffin (EC) cells. Colonic and jejunal afferent mechanosensory function was attenuated with age and these effects appeared earlier in the colon compared to the jejunum. Colonic age-related loss of mechanosensory function was more pronounced in high-threshold afferents compared to low-threshold afferents. Chemosensory function was attenuated in the 24-month colon, affecting TRPV1 and serotonergic signalling pathways. High-threshold mechanosensory afferent fibres and small-diameter DRG neurons possessed lower functional TRPV1 receptor responses, which occurred without a change in TRPV1 mRNA expression. Serotonergic signalling was attenuated at 24 months, but TPH1 and TPH2 mRNA expression was elevated in colonic tissue. In conclusion, we saw an age-associated decrease in afferent mechanosensitivity in the mouse colon affecting HT units. These units have the capacity to sensitise in response to injurious events, and their loss in ageing may predispose the elderly to lower awareness of GI injury or disease.
        Publication date
        2016-08-14
        Published in
        Journal of Physiology
        Published version
        https://doi.org/10.1113/JP271403
        Other links
        http://hdl.handle.net/2299/17312
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan