University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Current hot questions on the s process in AGB stars

        View/Open
        Lugaro_2016_J._Phys._3A_Conf._Ser._665_012021.pdf (PDF, 825Kb)
        Author
        Lugaro, M.
        Campbell, S. W.
        D'Orazi, V.
        Karakas, A. I.
        Garcia-Hernandez, D. A.
        Stancliffe, R. J.
        Tagliente, G.
        Iliadis, C.
        Rauscher, T.
        Attention
        2299/17416
        Abstract
        Asymptotic giant branch (AGB) stars are a main site of production of nuclei heavier than iron via the s process. In massive (>4 M⊙) AGB stars the operation of the 22Ne neutron source appears to be confirmed by observations of high Rb enhancements, while the lack of Tc in these stars rules out 13C as a main source of neutrons. The problem is that the Rb enhancements are not accompanied by Zr enhancements, as expected by s-process models. This discrepancy may be solved via a better understanding of the complex atmospheres of AGB stars. Second- generation stars in globular clusters (GCs), on the other hand, do not show enhancements in any s-process elements, not even Rb. If massive AGB stars are responsible for the composition of these GC stars, they may have evolved differently in GCs than in the field. In AGB stars of lower masses, 13C is the main source of neutrons and we can potentially constrain the effects of rotation and proton-ingestion episodes using the observed composition of post-AGB stars and of stardust SiC grains. Furthermore, independent asteroseismology observations of the rotational velocities of the cores of red giants and of white dwarves will play a fundamental role in helping us to better constrain the effect of rotation. Observations of carbon-enhanced metal-poor stars enriched in both Ba and Eu may require a neutron flux in-between the s and the r process, while the puzzling increase of Ba as function of the age in open clusters, not accompanied by increase in any other element heavier than iron, require further observational efforts. Finally, stardust SiC provides us high-precision constraints to test nuclear inputs such as neutron-capture cross sections of stable and unstable isotopes and the impact of excited nuclear states in stellar environments.
        Publication date
        2016-01-05
        Published in
        Journal of Physics: Conference Series
        Published version
        https://doi.org/10.1088/1742-6596/665/1/012021
        Other links
        http://hdl.handle.net/2299/17416
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan