University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Indirect carbon dioxide emissions from producing bioenergy from forest harvest residues

        View/Open
        REPO_et_al_2011_GCB_Bioenergy.pdf (PDF, 247Kb)
        Author
        Repo, Anna
        Tuomi, Mikko
        Liski, Jari
        Attention
        2299/17680
        Abstract
        Forest harvest residues are important raw materials for bioenergy in regions practicing forestry. Removing these residues from a harvest site reduces the carbon stock of the forest compared with conventional stem-only harvest because less litter in left on the site. The indirect carbon dioxide (CO 2) emission from producing bioenergy occur when carbon in the logging residues is emitted into the atmosphere at once through combustion, instead of being released little by little as a result of decomposition at the harvest sites. In this study (1) we introduce an approach to calculate this indirect emission from using logging residues for bioenergy production, and (2) estimate this emission at a typical target of harvest residue removal, i.e. boreal Norway spruce forest in Finland. The removal of stumps caused a larger indirect emission per unit of energy produced than the removal of branches because of a lower decomposition rate of the stumps. The indirect emission per unit of energy produced decreased with time since starting to collect the harvest residues as a result of decomposition at older harvest sites. During the 100 years of conducting this practice, the indirect emission from average-sized branches (diameter 2cm) decreased from 340 to 70kgCO 2eq.MWh -1 and that from stumps (diameter 26cm) from 340 to 160kgCO 2eq.MWh -1. These emissions are an order of magnitude larger than the other emissions (collecting, transporting, etc.) from the bioenergy production chain. When the bioenergy production was started, the total emissions were comparable to fossil fuels. The practice had to be carried out for 22 (stumps) or four (branches) years until the total emissions dropped below the emissions of natural gas. Our results emphasize the importance of accounting for land-use-related indirect emissions to correctly estimate the efficiency of bioenergy in reducing CO 2 emission into the atmosphere.
        Publication date
        2011-02-28
        Published in
        GCB Bioenergy
        Published version
        https://doi.org/10.1111/j.1757-1707.2010.01065.x
        Other links
        http://hdl.handle.net/2299/17680
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan