Show simple item record

dc.contributor.authorKrause, M.
dc.date.accessioned2017-04-19T13:29:46Z
dc.date.available2017-04-19T13:29:46Z
dc.date.issued2002-04-01
dc.identifier.citationKrause , M 2002 , ' Absorbers and Globular Cluster Formation in Powerful High Redshift Radio Galaxies ' , Astronomy & Astrophysics , vol. 386 , no. 1 , pp. L1-L4 . https://doi.org/10.1051/0004-6361:20020135
dc.identifier.issn0004-6361
dc.identifier.otherBibtex: urn:7a7ccad0d9ebc1578bf643ca34285f09
dc.identifier.otherORCID: /0000-0002-9610-5629/work/63687405
dc.identifier.urihttp://hdl.handle.net/2299/17967
dc.descriptionThis document is the Accepted Manuscript version of the following paper: M. Krause, 'Absorbers and globular cluster formation in powerful high-redshift radio galaxies', Astronomy & Astrophysics Letters, Vol. 386 (1) L1-L4, April 2002. The version of record is available online at doi: 10.1051/0004-6361:20020135. © ESO 2002
dc.description.abstractA radiative hydrodynamic simulation for a typical, powerful high redshift radio galaxy is presented. The jet is injected at one third the speed of light into a 10 000 times denser, homogeneous medium. In the beginning of the simulation, the bow shock consists of a spherical shell that is similar to a spherical blast wave. This shell cools radiatively down to ${\approx}10^4$ K, providing after $6 \times 10^6$ yrs a neutral column of $3.8 \times 10^{21}\,\mathrm{cm}^{-2}$ around the whole system. The shell starts to fragment and forms condensations. This absorbing screen will cover a smaller and smaller fraction of the radio source, and therefore the emission line region, and eventually form stars in typically 104 globular clusters of $10^6 \ M_\odot$. Approximately $10^9 \ M_\odot$ are entrained into the radio cocoon. This gas, cooling and illuminated from the radio source, could be the emission line gas observed in high redshifted radio galaxies and radio loud quasars. The neutral column behind the bow shock can account for the absorption found in almost all of the small sources. The globular cluster excess of ${\approx}10^4$ systems found in present day brightest cluster galaxies (BCGs), which are believed to be the vestiges of these objects, is consistent with the presented scenario.en
dc.format.extent314498
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysics
dc.subjecthydrodynamics
dc.subjectinstabilities
dc.subjectshock waves
dc.subjectgalaxies: jets
dc.subjectradiation mechanisms: thermal
dc.subjectintergalactic medium
dc.titleAbsorbers and Globular Cluster Formation in Powerful High Redshift Radio Galaxiesen
dc.contributor.institutionCentre for Astrophysics Research
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
dc.identifier.urlhttps://arxiv.org/pdf/astro-ph/0203372v1.pdf
rioxxterms.versionofrecord10.1051/0004-6361:20020135
rioxxterms.typeOther
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record