Show simple item record

dc.contributor.authorKrause, M.
dc.contributor.authorAlexander, P.
dc.date.accessioned2017-04-20T08:33:03Z
dc.date.available2017-04-20T08:33:03Z
dc.date.issued2007-04-01
dc.identifier.citationKrause , M & Alexander , P 2007 , ' Simulations of multiphase turbulence in jet cocoons ' , Monthly Notices of the Royal Astronomical Society , vol. 376 , pp. 465-478 . https://doi.org/10.1111/j.1365-2966.2007.11480.x
dc.identifier.issn0035-8711
dc.identifier.otherPURE: 10546139
dc.identifier.otherPURE UUID: 18118c47-8f99-4fae-8092-71e10606d895
dc.identifier.otherBibtex: urn:cfc7b260640ff163fbe777ff9fdb4473
dc.identifier.otherScopus: 34247255000
dc.identifier.otherORCID: /0000-0002-9610-5629/work/63687419
dc.identifier.urihttp://hdl.handle.net/2299/17976
dc.descriptionM. Krause and P. Alexander, 'Simulations of multiphase turbulence in jet cocoons', Monthly Notices of the Royal Astronomical Society, Vol. 376, pp. 465-478, April 2007, the version of record is available online at doi: 10.1111/j.1365-2966.2007.11480.x. Published by Oxford University Press on behalf of the Royal Astronomical Society. © 2007 The Authors. Journal compilation © 2007 RAS
dc.description.abstractThe interaction of optically emitting clouds with warm X-ray gas and hot, tenuous radio plasma in radio jet cocoons is modelled by 2D compressible hydrodynamic simulations. The initial setup is the Kelvin–Helmholtz instability at a contact surface of density contrast 104. The denser medium contains clouds of higher density. Optically thin radiation is realized via a cooling source term. The cool phase effectively extracts energy from the other gas which is both, radiated away and used for acceleration of the cold phase. This increases the system’s cooling rate substantially and leads to a massively amplified cold mass dropout. We show that it is feasible, given small seed clouds of the order of 100 M, that all of the optically emitting gas in a radio jet cocoon may be produced by this mechanism on the propagation time-scale of the jet. The mass is generally distributed as T−1/2 with temperature, with a prominent peak at 14 000 K. This peak is likely to be related to the counteracting effects of shock heating and a strong rise in the cooling function. The volume filling factor of cold gas in this peak is of the order of 10−5–10−3 and generally increases during the simulation time. The simulations tend towards an isotropic scale-free Kolmogorov-type energy spectrum over the simulation time-scale. We find the same Mach-number density relation as Kritsuk & Norman and show that this relation may explain the velocity widths of emission lines associated with high-redshift radio galaxies, if the environmental temperature is lower, or the jet-ambient density ratio is less extreme than in their low-redshift counterparts.en
dc.format.extent14
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.subjecthydrodynamics , instabilities , turbulence , methods: numerical , galaxies: jets
dc.titleSimulations of multiphase turbulence in jet cocoonsen
dc.contributor.institutionCentre for Astrophysics Research
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
rioxxterms.versionVoR
rioxxterms.versionofrecordhttps://doi.org/10.1111/j.1365-2966.2007.11480.x
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record