KILOPARSEC-SCALE DUST DISKS IN HIGH-REDSHIFT LUMINOUS SUBMILLIMETER GALAXIES
View/ Open
Author
Hodge, Jackie
Swinbank, Mark
Simpson, James
Smail, Ian
Walter, F.
Alexander, D.M.
Bertoldi, Frank
Biggs, Andy
Brandt, Niel
Chapman, S.C.
Coppin, Kristen
Chen, Chian Chou
Cox, Pierre
Dannerbauer, Helmut
Edge, A. C.
Greve, Thomas
J. Ivison, R.
Karim, A.
Knudsen, K.
Menten, Karl
Rix, H-W.
Schinnerer, Eva
Wardlow, J. L.
Weiss, A.
van der Werf, P.
Attention
2299/18160
Abstract
We present high-resolution (0farcs16) 870 μm Atacama Large Millimeter/submillimeter Array (ALMA) imaging of 16 luminous (${L}_{\mathrm{IR}}\sim 4\times {10}^{12}\,{L}_{\odot }$) submillimeter galaxies (SMGs) from the ALESS survey of the Extended Chandra Deep Field South. This dust imaging traces the dust-obscured star formation in these $z\sim 2.5$ galaxies on ~1.3 kpc scales. The emission has a median effective radius of R e = 0farcs24 ± 0farcs02, corresponding to a typical physical size of ${R}_{e}=$ 1.8 ± 0.2 kpc. We derive a median Sérsic index of n = 0.9 ± 0.2, implying that the dust emission is remarkably disk-like at the current resolution and sensitivity. We use different weighting schemes with the visibilities to search for clumps on 0farcs12 (~1.0 kpc) scales, but we find no significant evidence for clumping in the majority of cases. Indeed, we demonstrate using simulations that the observed morphologies are generally consistent with smooth exponential disks, suggesting that caution should be exercised when identifying candidate clumps in even moderate signal-to-noise ratio interferometric data. We compare our maps to comparable-resolution Hubble Space Telescope ${H}_{160}$-band images, finding that the stellar morphologies appear significantly more extended and disturbed, and suggesting that major mergers may be responsible for driving the formation of the compact dust disks we observe. The stark contrast between the obscured and unobscured morphologies may also have implications for SED fitting routines that assume the dust is co-located with the optical/near-IR continuum emission. Finally, we discuss the potential of the current bursts of star formation to transform the observed galaxy sizes and light profiles, showing that the $z\sim 0$ descendants of these SMGs are expected to have stellar masses, effective radii, and gas surface densities consistent with the most compact massive (${M}_{* }\,\sim $ 1–2 × 1011 ${M}_{\odot }$) early-type galaxies observed locally.
Publication date
2016-12-10Published in
The Astrophysical JournalPublished version
https://doi.org/10.3847/1538-4357/833/1/103Other links
http://hdl.handle.net/2299/18160Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
The H alpha galaxy survey. I. The galaxy sample, H alpha narrow-band observations and star formation parameters for 334 galaxies
James, P.A.; Shane, N.S.; Beckman, J.E.; Cardwell, A.; Collins, C.A.; Etherton, J.; de Jong, R.S.; Fathi, K.; Knapen, J.; Peletier, R.F.; Percival, S.M.; Pollacco, D.L.; Seigar, M.S.; Stedman, S. (2004)We discuss the selection and observations of a large sample of nearby galaxies, which we are using to quantify the star formation activity in the local Universe. The sample consists of 334 galaxies across all Hubble types ... -
On the Key Processes that Drive Galaxy Evolution: the Role of Galaxy Mergers, Accretion, Local Environment and Feedback in Shaping the Present-Day Universe
Martin, Garreth (2019-07-17)The study of galaxy evolution is a fundamental discipline in modern astrophysics, dealing with how and why galaxies of all types evolve over time. The diversity of present-day galaxies is a reflection of the processes ... -
The Physical Processes that Drive Galaxy Evolution - from Massive Galaxies to the Dwarf Regime
Jackson, Ryan (2021-09-25)The study of galaxy formation and evolution is a cornerstone in astrophysics, as galaxies connect together all scales of the Universe. The physical processes that govern galaxies therefore needs to be fully understood if ...