Show simple item record

dc.contributor.authorKakofengitis, Dimitris
dc.contributor.authorOliva, Maxime
dc.contributor.authorSteuernagel, Ole
dc.date.accessioned2017-05-30T18:43:04Z
dc.date.available2017-05-30T18:43:04Z
dc.date.issued2017-02-27
dc.identifier.citationKakofengitis , D , Oliva , M & Steuernagel , O 2017 , ' Wigner's representation of quantum mechanics in integral form and its applications ' , Physical Review A , vol. 95 , no. 2 , 022127 . https://doi.org/10.1103/PhysRevA.95.022127
dc.identifier.issn1050-2947
dc.identifier.otherPURE: 10691260
dc.identifier.otherPURE UUID: 4e250427-b587-4195-89f7-412aba489985
dc.identifier.otherArXiv: http://arxiv.org/abs/1611.06891v1
dc.identifier.otherScopus: 85014709551
dc.identifier.otherORCID: /0000-0003-4123-7517/work/54404243
dc.identifier.urihttp://hdl.handle.net/2299/18238
dc.descriptionThis document is the Accepted Manuscript version of the following article: Dimitris Kakofengitis, Maxime Oliva, and Ole Steuernagel, ‘Wigner's representation of quantum mechanics in integral form and its applications’, Physical Review A, Vol. 95, 022127, published 27 February 2017. DOI: https://doi.org/10.1103/PhysRevA.95.022127 ©2017 American Physical Society.
dc.description.abstractWe consider quantum phase space dynamics using the Wigner representation of quantum mechanics. We stress the usefulness of the integral form for the description of Wigner's phase space current~$\bm J$ as an alternative to the popular Moyal bracket. The integral form brings out the symmetries between momentum and position representations of quantum mechanics, is numerically stable, and allows us to perform some calculations using elementary integrals instead of Groenewold star-products. Our central result is an explicit, elementary proof which shows that only systems up to quadratic in their potential fulfil Liouville's theorem of volume preservation in quantum mechanics. Contrary to a recent suggestion, our proof shows that the non-Liouvillian character of quantum phase space dynamics cannot be transformed away.en
dc.language.isoeng
dc.relation.ispartofPhysical Review A
dc.rightsOpen
dc.subjectquant-ph
dc.titleWigner's representation of quantum mechanics in integral form and its applicationsen
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.contributor.institutionCentre for Atmospheric and Climate Physics Research
dc.description.statusPeer reviewed
dc.identifier.urlhttps://arxiv.org/pdf/1611.06891
dc.relation.schoolSchool of Physics, Astronomy and Mathematics
dc.description.versiontypeFinal Accepted Version
dcterms.dateAccepted2017-02-27
rioxxterms.versionAM
rioxxterms.versionofrecordhttps://doi.org/10.1103/PhysRevA.95.022127
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue
herts.rights.accesstypeOpen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record