NIR Tully-Fisher in the Zone of Avoidance. -- III. Deep NIR catalogue of the HIZOA galaxies
View/ Open
Author
Said, Khaled
Kraan-Korteweg, Renée C.
Jarrett, T. H.
Staveley-Smith, Lister
Williams, Wendy
Attention
2299/18328
Abstract
We present a deep near-infrared (NIR) photometric catalogue of sources from the Parkes HI Zone of Avoidance (HIZOA) survey, which forms the basis for an investigation of the matter distribution in the Zone of Avoidance. Observations were conducted between 2006 and 2013 using the Infrared Survey Facility (IRSF), a 1.4-m telescope situated at the South African Astronomical Observatory site in Sutherland. The images cover all 1108 HIZOA detections and yield 915 galaxies. An additional 105 bright 2MASS galaxies in the southern ZOA were imaged with the IRSF, resulting in 129 galaxies. The average $K_s$-band seeing and sky background for the survey are 1.38 arcsec and 20.1 mag, respectively. The detection rate as a function of stellar density and dust extinction is found to depend mainly on the HI mass of the HI detected galaxies, which in principal correlates with the NIR brightness of the spiral galaxies. The measured isophotal magnitudes are of sufficient accuracy (errors $\sim$ 0.02 mag) to be used in a Tully-Fisher analysis. In the final NIR catalogue, 285 galaxies have both IRSF and 2MASS photometry (180 HIZOA plus 105 bright 2MASX galaxies). The $K_s$-band isophotal magnitudes presented in this paper agree, within the uncertainties, with those reported in the 2MASX catalogue. Another 30 galaxies, from the HIZOA northern extension, are also covered by UKIDSS Galactic Plane Survey (GPS) images, which are one magnitude deeper than our IRSF images. A modified version of our photometry pipeline was used to derive the photometric parameters of these UKIDSS galaxies. Good agreement was found between the respective $K_s$-band isophotal magnitudes. These comparisons confirm the robustness of the isophotal parameters and demonstrate that the IRSF images do not suffer from foreground contamination, after star removal, nor under-estimate the isophotal fluxes of ZoA galaxies.