Show simple item record

dc.contributor.authorForbrich, Jan
dc.contributor.authorLada, Charles J.
dc.contributor.authorLombardi, Marco
dc.contributor.authorRoman-Zuñiga, Carlos
dc.contributor.authorAlves, João
dc.date.accessioned2017-07-12T16:33:31Z
dc.date.available2017-07-12T16:33:31Z
dc.date.issued2015-08-13
dc.identifier.citationForbrich , J , Lada , C J , Lombardi , M , Roman-Zuñiga , C & Alves , J 2015 , ' Smoke in the Pipe Nebula: dust emission and grain growth in the starless core FeSt 1-457 ' , Astronomy & Astrophysics , vol. 580 , A114 . https://doi.org/10.1051/0004-6361/201425375
dc.identifier.issn0004-6361
dc.identifier.otherPURE: 11211801
dc.identifier.otherPURE UUID: dbc56949-8eaa-4139-9fb8-c84b0d733634
dc.identifier.otherArXiv: http://arxiv.org/abs/1505.06212v1
dc.identifier.otherScopus: 84939422849
dc.identifier.otherORCID: /0000-0001-8694-4966/work/62751229
dc.identifier.urihttp://hdl.handle.net/2299/18902
dc.descriptionJ. Forbrich, et al., “Smoke in the Pipe Nebula: dust emission and grain growth in the starless core FeSt 1-457”, Astronomy & Astrophysics, Vol 580, August 2015. This version of record is available online at: https://doi.org/10.1051/0004-6361/201425375 Reproduced with Permission from Astronomy and Astrophysics, © ESO 2016.
dc.description.abstract(abridged) Methods: We derive maps of submillimeter dust optical depth and effective dust temperature from Herschel data that were calibrated against Planck. After calibration, we then fit a modified blackbody to the long-wavelength Herschel data, using the Planck-derived dust opacity spectral index beta, derived on scales of 30' (or ~1 pc). We use this model to make predictions of the submillimeter flux density at 850 micron, and we compare these in turn with APEX-Laboca observations. Results: A comparison of the submillimeter dust optical depth and near-infrared extinction data reveals evidence for an increased submillimeter dust opacity at high column densities, interpreted as an indication of grain growth in the inner parts of the core. Additionally, a comparison of the Herschel dust model and the Laboca data reveals that the frequency dependence of the submillimeter opacity, described by the spectral index beta, does not change. A single beta that is only slightly different from the Planck-derived value is sufficient to describe the data, beta=1.53+/-0.07. We apply a similar analysis to Barnard 68, a core with significantly lower column densities than FeSt 1-457, and we do not find evidence for grain growth but also a single beta. Conclusions: While we find evidence for grain growth from the dust opacity in FeSt 1-457, we find no evidence for significant variations in the dust opacity spectral index beta on scales 0.02x36x30'). The correction to the Planck-derived dust beta that we find in both cases is on the order of the measurement error, not including any systematic errors, and it would thus be reasonable to directly apply the dust beta from the Planck all-sky dust model. As a corollary, reliable effective temperature maps can be derived which would be otherwise affected by beta variations.en
dc.format.extent10
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysics
dc.subjectastro-ph.SR
dc.subjectastro-ph.GA
dc.titleSmoke in the Pipe Nebula: dust emission and grain growth in the starless core FeSt 1-457en
dc.contributor.institutionCentre for Astrophysics Research
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
rioxxterms.versionVoR
rioxxterms.versionofrecordhttps://doi.org/10.1051/0004-6361/201425375
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record