University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Resolved spectroscopy of gravitationally lensed galaxies : global dynamics and star-forming clumps on ~100pc scales

        View/Open
        Final Published version (PDF, 9Mb)
        Author
        Livermore, R. C.
        Jones, T. A.
        Richard, J.
        Bower, R. G.
        Swinbank, A. M.
        Yuan, T. -T.
        Edge, A. C.
        Ellis, R. S.
        Kewley, L. J.
        Smail, Ian
        Coppin, K. E. K.
        Ebeling, H.
        Attention
        2299/18918
        Abstract
        We present adaptive optics-assisted integral field spectroscopy around the Ha or Hb lines of 12 gravitationally lensed galaxies obtained with VLT/SINFONI, Keck/OSIRIS and Gemini/NIFS. We combine these data with previous observations and investigate the dynamics and star formation properties of 17 lensed galaxies at z = 1-4. Thanks to gravitational magnification of 1.4 - 90x by foreground clusters, effective spatial resolutions of 40 - 700 pc are achieved. The magnification also allows us to probe lower star formation rates and stellar masses than unlensed samples; our target galaxies feature dust-corrected SFRs derived from Ha or Hb emission of 0.8 - 40Msol/yr, and stellar masses M* ~ 4e8 - 6e10 Msol. All of the galaxies have velocity gradients, with 59% consistent with being rotating discs and a likely merger fraction of 29%, with the remaining 12% classed as 'undetermined.' We extract 50 star-forming clumps with sizes in the range 60pc - 1kpc from the Ha (or Hb) maps, and find that their surface brightnesses and their characteristic luminosities evolve to higher luminosities with redshift. We show that this evolution can be described by fragmentation on larger scales in gas-rich discs, and is likely to be driven by evolving gas fractions.
        Publication date
        2015-06-21
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1093/mnras/stv686
        Other links
        http://hdl.handle.net/2299/18918
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan