University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The Relationship Between the Dust and Gas-Phase CO Across the California Molecular Cloud

        View/Open
        Published_Version.pdf (PDF, 7Mb)
        Author
        Kong, S.
        Lada, C. J.
        Lada, E. A.
        Román-Zúñiga, C.
        Bieging, J. H.
        Lombardi, M.
        Forbrich, J.
        Alves, J. F.
        Attention
        2299/18930
        Abstract
        A deep, wide-field, near-infrared imaging survey was used to construct an extinction map of the southeastern part of the California Molecular Cloud (CMC) with $\sim$ 0.5 arc min resolution. The same region was also surveyed in the $^{12}$CO(2-1), $^{13}$CO(2-1), C$^{18}$O(2-1) emission lines at the same angular resolution. Strong spatial variations in the abundances of $^{13}$CO and C$^{18}$O were found to be correlated with variations in gas temperature, consistent with temperature dependent CO depletion/desorption on dust grains. The $^{13}$CO to C$^{18}$O abundance ratio was found to increase with decreasing extinction, suggesting selective photodissociation of C$^{18}$O by the ambient UV radiation field. The cloud averaged X-factor is found to be $ $ $=$ 2.53 $\times$ 10$^{20}$ ${\rm cm}^{-2}~({\rm K~km~s}^{-1})^{-1}$, somewhat higher than the Milky Way average. On sub-parsec scales we find no single empirical value of the X-factor that can characterize the molecular gas in cold (T$_{\rm k}$ $\lesssim$ 15 K) regions, with X$_{\rm CO}$ $\propto$ A$_{\rm V}$$^{0.74}$ for A$_{\rm V}$ $\gtrsim$ 3 magnitudes. However in regions containing relatively hot (T$_{\rm ex}$ $\gtrsim$ 25 K) gas we find a clear correlation between W($^{12}$CO) and A$_{\rm V}$ over a large (3 $\lesssim$ A$_{\rm V}$ $\lesssim$ 25 mag) extinction range. This suggests a constant X$_{\rm CO}$ $=$ 1.5 $\times$ 10$^{20}$ ${\rm cm}^{-2}~({\rm K~km~s}^{-1})^{-1}$ for the hot gas, a lower value than either the average for the CMC or Milky Way. We find a correlation between X$_{\rm CO}$ and T$_{\rm ex}$ with X$_{\rm CO}$ $\propto$ T$_{\rm ex}$$^{-0.7}$ suggesting that the global X-factor of a cloud may depend on the relative amounts of hot gas within it.
        Publication date
        2015-05-20
        Published in
        The Astrophysical Journal
        Published version
        https://doi.org/10.1088/0004-637X/805/1/58
        Other links
        http://hdl.handle.net/2299/18930
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan