Show simple item record

dc.contributor.authorYoung, Charles
dc.date.accessioned2017-07-18T15:30:01Z
dc.date.available2017-07-18T15:30:01Z
dc.date.issued2015-12-01
dc.identifier.citationYoung , C 2015 , ' Quantum loop algebras and l-root operators ' , Transformation Groups , vol. 20 , no. 4 , pp. 1195-1226 . https://doi.org/10.1007/s00031-015-9339-4
dc.identifier.issn1083-4362
dc.identifier.otherPURE: 7709061
dc.identifier.otherPURE UUID: d6bd06f9-fd4d-49cc-863a-fe94864f16be
dc.identifier.otherScopus: 84945491497
dc.identifier.otherORCID: /0000-0002-7490-1122/work/55503496
dc.identifier.urihttp://hdl.handle.net/2299/18970
dc.descriptionThis is the accepted manuscript of the following article: Charles Young, “Quantum loop algebras and l-root operators”, Transformation Groups, Vol. 20(4): 1195-1226, September 2015. The final published version is available at: https://link.springer.com/article/10.1007%2Fs00031-015-9339-4 © Springer Science+Business Media New York (2015)
dc.description.abstractLet g be a simple Lie algebra and q transcendental. We consider the category C_P of finite-dimensional representations of the quantum loop algebra Uq(Lg) in which the poles of all l-weights belong to specified finite sets P. Given the data (g,q,P), we define an algebra A whose raising/lowering operators are constructed to act with definite l-weight (unlike those of Uq(Lg) itself). It is shown that there is a homomorphism Uq(Lg) -> A such that every representation V in C_P is the pull-back of a representation of A.en
dc.format.extent32
dc.language.isoeng
dc.relation.ispartofTransformation Groups
dc.titleQuantum loop algebras and l-root operatorsen
dc.contributor.institutionSchool of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
dc.identifier.urlhttp://arxiv.org/abs/1206.6657
rioxxterms.versionAM
rioxxterms.versionofrecordhttps://doi.org/10.1007/s00031-015-9339-4
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record