University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • PhD Theses Collection
        • View Item

        Efficacy of Fungicides on Coexisting Leptophaeria spp. Causing Phoma Stem Canker on Winter Oilseed Rape

        View/Open
        Download fulltext (PDF, 42Mb)
        Author
        Sewell, Thomas
        Attention
        2299/18990
        Abstract
        Phoma stem canker is a disease of oilseed rape (Brassica napus) caused by closely related plant pathogens Leptosphaeria maculans and L. biglobosa. It is an economically important disease, causing annual yield losses of approximately £770 million worldwide. When colonising oilseed rape, L. maculans and L. biglobosa exist in close proximity on the leaf, competing for resources as they move through the main leaf vein and into the stem. Fungicides are commonly used to decrease severity of phoma stem canker on oilseed rape. However, the efficacy and longevity of active chemicals is under threat from evolution of resistance in pathogen populations and government legalisation. Moreover, it has been suggested that both L. maculans and L. biglobosa differ in their sensitivity to azoles, and important class of fungicides that are used to control the disease through the inhibition of lanosterol 14-α demethylase (erg11, CYP51). This project aims to further understand the role that fungicides have in controlling phoma stem canker by investigating their efficacy against L. maculans and L. biglobosa in crops, in vitro and in planta. In field experiments, established in Cambridgeshire across four cropping seasons, the fungicide mixture penthiopyrad (SDHI) plus picoxystrobin (QoI) was as effective at controlling phoma leaf spotting and phoma stem canker in winter oilseed rape as prothioconazole (DMI), suggesting that both fungicides could be used to reduce phoma stem canker symptoms. The two pathogens differed in their growth rates in vitro, with L. biglobosa growing faster than L. maculans when untreated or treated with lower fungicide concentrations. Fungicide sensitivity assays suggest that L. maculans and L. biglobosa are both sensitive to DMI, SDHI and QoI fungicides and that differences between the species are minor. Prothioconazole and penthiopyrad + picoxystrobin had a similar efficacy on oilseed rape cotyledons colonised with either L. maculans or L. biglobosa. There was no difference between species on prothioconazole treated plants, although there was a difference between L. maculans and L. biglobosa when treated with 20 μg/ml penthiopyrad + picoxystrobin. Heterologous yeast expression of LmCYP51B and LbCYP51B with fungicide sensitivity testing of the yeast transformants suggests that LmCYP51B and LbCYP51B are similarly sensitive to azole fungicides flusilazole, prothioconazole-desthio and tebuconazole. These findings are supported by homology protein modelling, which predicts that LmCYP51B and LbCYP51B are structurally very similar, specifically at the azole-binding site. In conclusion, fungicides are still an effective control method for reducing phoma stem canker symptoms caused by Leptosphaeria species in the UK, and a useful tool to in the sustainable production of oilseed rape.
        Publication date
        2017-07-19
        Published version
        https://doi.org/10.18745/th.18990
        https://doi.org/10.18745/th.18990
        Other links
        http://hdl.handle.net/2299/18990
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan