Show simple item record

dc.contributor.authorNaseby, D.C.
dc.contributor.authorLynch, J.M.
dc.date.accessioned2008-04-14T11:30:23Z
dc.date.available2008-04-14T11:30:23Z
dc.date.issued1998
dc.identifier.citationNaseby , D C & Lynch , J M 1998 , ' Impact of wild-type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea ' , Molecular Ecology , vol. 7 , no. 5 , pp. 617-625 . https://doi.org/10.1046/j.1365-294x.1998.00367.x
dc.identifier.issn0962-1083
dc.identifier.otherPURE: 122180
dc.identifier.otherPURE UUID: c1438bac-f8c3-4025-aff2-3927e52cddb9
dc.identifier.otherdspace: 2299/1914
dc.identifier.otherScopus: 0031862075
dc.identifier.urihttp://hdl.handle.net/2299/1914
dc.descriptionThe definitive version is available at www.blackwell-synergy.com. Copyright Blackwell Publishing DOI : 10.1046/j.1365-294x.1998.00367.x
dc.description.abstractThe aim of this work was to determine the impact of wild type along with functionally and non-functionally modified Pseudomonas fluorescens strains in the rhizosphere. The wild type F113 strain carried a gene encoding the production of the antibiotic 2,4 diacetylphloroglucinol (DAPG) useful in plant disease control, and was marked with a lacZY gene cassette. The first modified strain was a functional modification of strain F113 with repressed production of DAPG, creating the DAPG negative strain F113 G22. The second paired comparison was a non-functional modification of wild type (unmarked) strain SBW25, constructed to carry marker genes only, creating strain SBW25 EeZY-6KX. Significant perturbations were found in the indigenous bacterial population structure, with the F113, (DAPG+) strain causing a shift towards slower growing colonies (K strategists) compared with the non-antibiotic producing derivative (F113 G22) and the SBW25 strains. The DAPG+ strain also significantly reduced, in comparison with the other inocula, the total Pseudomonas populations but did not affect the total microbial populations. The survival of F113 and F113 G22 were an order of magnitude lower than the SBW 25 strains. The DAPG+ strain caused a significant decrease in the shoot to root ratio in comparison to the control and other inoculants, indicating plant stress. F113 increased soil alkaline phosphatase, phosphodiesterase and aryl sulphatase activities compared to the other inocula, which themselves reduced the same enzyme activities compared to the control. In contrast to this, the -glucosidase, -galactosidase and N-acetyl glucosaminidase activities decreased with the inoculation of the DAPG+ strain. These results indicate that soil enzymes are sensitive to the impact of GMM inoculation.en
dc.language.isoeng
dc.relation.ispartofMolecular Ecology
dc.rightsOpen
dc.titleImpact of wild-type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of peaen
dc.contributor.institutionDepartment of Human and Environmental Sciences
dc.description.statusPeer reviewed
dcterms.dateAccepted1998
rioxxterms.versionofrecordhttps://doi.org/10.1046/j.1365-294x.1998.00367.x
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue
herts.rights.accesstypeOpen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record