dc.contributor.author | M, Jarajreh | |
dc.contributor.author | Giacoumidis, E | |
dc.contributor.author | Aldaya, I | |
dc.contributor.author | Le, S.T. | |
dc.contributor.author | Tsokanos, Athanasios | |
dc.contributor.author | Ghassemlooy, Z. | |
dc.contributor.author | Doran , N.J. | |
dc.date.accessioned | 2017-09-04T17:03:12Z | |
dc.date.available | 2017-09-04T17:03:12Z | |
dc.date.issued | 2015-02-15 | |
dc.identifier.citation | M , J , Giacoumidis , E , Aldaya , I , Le , S T , Tsokanos , A , Ghassemlooy , Z & Doran , N J 2015 , ' Artificial Neural Network Nonlinear Equalizer for Coherent Optical OFDM ' , IEEE Photonics Technology Letters , vol. 27 , no. 4 , pp. 387-390 . https://doi.org/10.1109/LPT.2014.2375960 | |
dc.identifier.issn | 1041-1135 | |
dc.identifier.uri | http://hdl.handle.net/2299/19312 | |
dc.description | Mutsam A. Jarajreh, et al, 'Artificial Neural Network Nonlinear Equalizer for Coherent Optical OFDM', IEEE Photonics Technology Letters, Vol. 27 (4), February 2015, available online at: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6975096&tag=1. | |
dc.description.abstract | We propose a novel low-complexity artificial neural network (ANN)-based nonlinear equalizer (NLE) for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) and compare it with the recent inverse Volterra-series transfer function (IVSTF)-based NLE over up to 1000 km of uncompensated links. Demonstration of ANN-NLE at 80-Gb/s CO-OFDM using 16-quadrature amplitude modulation reveals a Q-factor improvement after 1000-km transmission of 3 and 1 dB with respect to the linear equalization and IVSTF-NLE, respectively. | en |
dc.format.extent | 4 | |
dc.language.iso | eng | |
dc.relation.ispartof | IEEE Photonics Technology Letters | |
dc.title | Artificial Neural Network Nonlinear Equalizer for Coherent Optical OFDM | en |
dc.contributor.institution | Centre for AI and Robotics Research | |
dc.contributor.institution | Department of Computer Science | |
dc.contributor.institution | School of Physics, Engineering & Computer Science | |
dc.contributor.institution | Cybersecurity and Computing Systems | |
dc.contributor.institution | Networks and Security Research Centre | |
dc.description.status | Peer reviewed | |
dc.identifier.url | http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6975096 | |
rioxxterms.versionofrecord | 10.1109/LPT.2014.2375960 | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |