University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Flow Structure and Heat Transfer Characteristics in Rotor-Stator Cavity with Inlet at Low Radius

        Author
        Luo, X
        Zhao, X
        Wang, L
        Wu, Hongwei
        Xu, G
        Attention
        2299/19426
        Abstract
        In this article, a combined experimental and computational study has been conducted to provide better understanding of the flow structure and heat transfer characteristics in a rotor–stator cavity with inlet at low radius. A new test rig was set up to investigate the heat transfer coefficient using transient thermochromic liquid crystal (TLC) technique. Six different rotational speeds, i.e., 500, 1000, 1500, 2000, 2500, 3000 rpm, were considered. The rotational Reynolds number (Reω) is ranging from 4.16 × 105 to 2.49 × 106, and the flow rate coefficient (CW) ranges from 1.3 × 104 to 4.77 × 104, with corresponding turbulent flow parameter (λT) in the range of 0.099 ≤ λT ≤ 1.527. A high-Reynolds-number realizable k–ε turbulence model was employed to simulate the flow and heat transfer characteristics in the cavity. The comparison of the local and the average Nusselt number on the surface of the main disk between the numerical results and the experimental data indicated that: (1) both the rotational Reynolds number (Reω) and a newly proposed flow pattern parameter (λTx = CwReω−1.2) dominated the flow characteristics in the rotor–stator cavity, (2) three different regimes could be determined based on the proposed turbulent flow parameter, namely, viscous regime for λTx ≤ 0.0009, co-determined regime for 0.0009 < λTx < 0.0028, and inertial regime for λTx ≥ 0.0028, and (3) the flow structure played an important role in determining the heat transfer performance inside the cavity.
        Publication date
        2014-09-05
        Published in
        Applied Thermal Engineering
        Published version
        https://doi.org/10.1016/j.applthermaleng.2014.05.006
        Other links
        http://hdl.handle.net/2299/19426
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan