Show simple item record

dc.contributor.authorJavadi, A
dc.contributor.authorEmo, B
dc.contributor.authorHoward, L
dc.contributor.authorZisch, F
dc.contributor.authorYu, Y
dc.contributor.authorKnight, Rebecca
dc.contributor.authorPinelo, J
dc.contributor.authorSpiers, H
dc.date.accessioned2017-11-14T17:48:23Z
dc.date.available2017-11-14T17:48:23Z
dc.date.issued2017-03-21
dc.identifier.citationJavadi , A , Emo , B , Howard , L , Zisch , F , Yu , Y , Knight , R , Pinelo , J & Spiers , H 2017 , ' Hippocampal and prefrontal processing of network topology to simulate the future. ' , Nature Communications , vol. 8 , 14652 . https://doi.org/10.1038/ncomms14652
dc.identifier.otherORCID: /0000-0002-9400-9377/work/35672764
dc.identifier.urihttp://hdl.handle.net/2299/19516
dc.descriptionThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ Amir-Homayoun Javadi, Beatrix Emo, Lorelei R. Howard, Fional E. Zisch, Yichao Yu, Rebecca Knight, Joao Pineo Silva & Hugo J. Spiers, 'Hippocampal and prefrontal processing of network topology to simulate the future', Nature Communications, 8, article number 14652 (2017), doi: 10.1038/ncomms14652 © 2017 The Authors Published by Springer Nature.
dc.description.abstractTopological networks lie at the heart of our cities and social milieu. However, it remains unclear how and when the brain processes topological structures to guide future behaviour during everyday life. Using fMRI in humans and a simulation of London (UK), here we show that, specifically when new streets are entered during navigation of the city, right posterior hippocampal activity indexes the change in the number of local topological connections available for future travel and right anterior hippocampal activity reflects global properties of the street entered. When forced detours require re-planning of the route to the goal, bilateral inferior lateral prefrontal activity scales with the planning demands of a breadth-first search of future paths. These results help shape models of how hippocampal and prefrontal regions support navigation, planning and future simulation.en
dc.format.extent2996849
dc.language.isoeng
dc.relation.ispartofNature Communications
dc.subjecthippocampus
dc.subjectspatial memory
dc.titleHippocampal and prefrontal processing of network topology to simulate the future.en
dc.contributor.institutionPsychology
dc.contributor.institutionCognitive Neuropsychology
dc.contributor.institutionDepartment of Psychology and Sports Sciences
dc.contributor.institutionCentre for Research in Psychology and Sport Sciences
dc.contributor.institutionSchool of Life and Medical Sciences
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1038/ncomms14652
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record