University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Sensitivity studies on convective schemes and model resolutions in the simulations of wintertime circulation and precipitation over the Western Himalayas

        Author
        Sinha, P.
        Tiwari, Pushp Raj
        Kar, S. C.
        Mohanty, U. C.
        Raju, P. V. S.
        Dey, S.
        Shekhar, M. S.
        Attention
        2299/19577
        Abstract
        The present study examines the performance of convective parameterization schemes at two different horizontal resolutions (90 and 30 km) in simulating winter (December–February; DJF) circulation and associated precipitation over the Western Himalayas using the regional climate model RegCM4. The model integrations are carried out in a one-way nested mode for three distinct precipitation years (excess, normal and deficit) using four combinations of cumulus schemes. The National Center for Environment Prediction—Department of Energy Reanalysis-2 project utilized gridded data, observed precipitation data from the India Meteorological Department and station data from the Snow and Avalanche Study Establishment were used to evaluate model performance. The seasonal mean circulation patterns and precipitation distribution are well demonstrated by all of the cumulus convection schemes. However, model performance varies using different schemes. Statistical analysis confirms that the root mean square error is reduced by about 2–3 times and the correlation coefficient (CC) increases in the fine resolution (30 km) simulations compared to coarse resolution (90 km) simulations. A statistically significant CC (at a 10 % significance level) is found only in the fine resolution simulations. The Grell cumulus model with a Fritsch–Chappell closure (Grell-FC) is better at simulating seasonal mean patterns and inter-annual variability of two contrasting winter seasons than the other scheme combinations.
        Publication date
        2015-02-01
        Published in
        Pure and Applied Geophysics
        Published version
        https://doi.org/10.1007/s00024-014-0935-3
        Other links
        http://hdl.handle.net/2299/19577
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan