University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The Novel Phages phiCD5763 and phiCD2955 Represent Two Groups of Big Plasmidial Siphoviridae Phages of Clostridium difficile

        View/Open
        Published_Version.pdf (PDF, 2Mb)
        Author
        Ramírez-Vargas, Gabriel
        Goh, Shan
        Rodríguez, César
        Attention
        2299/19790
        Abstract
        Until recently, Clostridium difficile phages were limited to Myoviruses and Siphoviruses of medium genome length (32–57 kb). Here we report the finding of phiCD5763, a Siphovirus with a large extrachromosomal circular genome (132.5 kb, 172 ORFs) and a large capsid (205.6 ± 25.6 nm in diameter) infecting MLST Clade 1 strains of C. difficile. Two subgroups of big phage genomes similar to phiCD5763 were identified in 32 NAPCR1/RT012/ST-54 C. difficile isolates from Costa Rica and in whole genome sequences (WGS) of 41 C. difficile isolates of Clades 1, 2, 3, and 4 from Canada, USA, UK, Belgium, Iraq, and China. Through comparative genomics we discovered another putative big phage genome in a non-NAPCR1 isolate from Costa Rica, phiCD2955, which represents other big phage genomes found in 130 WGS of MLST Clade 1 and 2 isolates from Canada, USA, Hungary, France, Austria, and UK. phiCD2955 (131.6 kb, 172 ORFs) is related to a previously reported C. difficile phage genome, phiCD211/phiCDIF1296T. Detailed genome analyses of phiCD5763, phiCD2955, phiCD211/phiCDIF1296T, and seven other putative C. difficile big phage genome sequences of 131–136 kb reconstructed from publicly available WGS revealed a modular gene organization and high levels of sequence heterogeneity at several hotspots, suggesting that these genomes correspond to biological entities undergoing recombination. Compared to other C. difficile phages, these big phages have unique predicted terminase, capsid, portal, neck and tail proteins, receptor binding proteins (RBPs), recombinases, resolvases, primases, helicases, ligases, and hypothetical proteins. Moreover, their predicted gene load suggests a complex regulation of both phage and host functions. Overall, our results indicate that the prevalence of C. difficile big bacteriophages is more widespread than realized and open new avenues of research aiming to decipher how these viral elements influence the biology of this emerging pathogen.
        Publication date
        2018-01-22
        Published in
        Frontiers in Microbiology
        Published version
        https://doi.org/10.3389/fmicb.2018.00026
        Other links
        http://hdl.handle.net/2299/19790
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan