University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Sensitivity of the Himalayan orography representation in simulation of winter precipitation using Regional Climate Model (RegCM) nested in a GCM

        View/Open
        Accepted_manuscript.pdf (PDF, 2Mb)
        Author
        Tiwari, P. R.
        Kar, S. C.
        Mohanty, U. C.
        Dey, S.
        Sinha, P.
        Shekhar, M. S.
        Attention
        2299/19812
        Abstract
        The role of the Himalayan orography representationin a Regional Climate Model (RegCM4) nested inNCMRWF global spectral model is examined in simulatingthe winter circulation and associated precipitation over theNorthwest India (NWI; 23°–37.5°N and 69°–85°E) region.For this purpose, nine different set of orography representationsfor nine distinct precipitation years (three years eachfor wet, normal and dry) have been considered by increasing(decreasing) 5, 10, 15, and 20% from the mean height(CNTRL) of the Himalaya in RegCM4 model. Validationwith various observations revealed a good improvementin reproducing the precipitation intensity and distributionwith increased model height compared to the resultsobtained from CNTRL and reduced orography experiments.Further it has been found that, increase in heightby 10% (P10) increases seasonal precipitation about 20%,while decrease in height by 10% (M10) results around 28%reduction in seasonal precipitation as compared to CNTRLexperiment over NWI region. This improvement in precipitationsimulation comes due to better representation ofvertical pressure velocity and moisture transport as thesefactors play an important role in wintertime precipitationprocesses over NWI region. Furthermore, a comparison of model-simulated precipitation with observed precipitationat 17 station locations has been also carried out. Overall,the results suggest that when the orographic increment of10% (P10) is applied on RegCM4 model, it has better skillin simulating the precipitation over the NWI region andthis model is a useful tool for further regional downscalingstudies.
        Publication date
        2017-12-01
        Published in
        Climate Dynamics
        Published version
        https://doi.org/10.1007/s00382-017-3567-3
        Other links
        http://hdl.handle.net/2299/19812
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan