University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Normal black holes in bulge-less galaxies: the largely quiescent, merger-free growth of black holes over cosmic time

        View/Open
        Final Published version (PDF, 6Mb)
        Author
        Martin, G.
        Kaviraj, S.
        Volonteri, M.
        Simmons, B. D.
        Devriendt, J. E. G.
        Lintott, C. J.
        Smethurst, R. J.
        Dubois, Y.
        Pichon, C.
        Attention
        2299/20144
        Abstract
        Understanding the processes that drive the formation of black holes (BHs) is a key topic in observational cosmology. While the observed M BH-M Bulge correlation in bulge-dominated galaxies is thought to be produced by major mergers, the existence of an M BH-M* relation, across all galaxy morphological types, suggests that BHs may be largely built by secular processes. Recent evidence that bulge-less galaxies, which are unlikely to have had significant mergers, are offset from the M BH-M Bulge relation, but lie on the M BH-M* relation, has strengthened this hypothesis. Nevertheless, the small size and heterogeneity of current data sets, coupled with the difficulty in measuring precise BH masses, make it challenging to address this issue using empirical studies alone. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation to probe the role of mergers in BH growth over cosmic time. We show that (1) as suggested by observations, simulated bulge-less galaxies lie offset from the main M BH-M Bulge relation, but on the M BH-M* relation, (2) the positions of galaxies on the M BH-M* relation are not affected by their merger histories, and (3) only ~35 per cent of the BH mass in today's massive galaxies is directly attributable to merging - the majority (~65 per cent) of BH growth, therefore, takes place gradually, via secular processes, over cosmic time.
        Publication date
        2018-05-11
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1093/mnras/sty324
        License
        http://creativecommons.org/licenses/by/4.0/
        Other links
        http://hdl.handle.net/2299/20144
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan