University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Prognosis of Bearing Acoustic Emission Signals Using Supervised Machine Learning

        View/Open
        Accepted_Manuscript.pdf (PDF, 933Kb)
        Author
        Elforjani, Mohamed
        Shanbr, Suliman
        Attention
        2299/20238
        Abstract
        Acoustic emission (AE) technique can be successfully utilized for condition monitoring of various machining and industrial processes. To keep machines function at optimal levels, fault prognosis model to predict the remaining useful life (RUL) of machine components is required. This model is used to analyze the output signals of a machine whilst in operation and accordingly helps to set an early alarm tool that reduces the untimely replacement of components and the wasteful machine downtime. Recent improvements indicate the drive on the way towards incorporation of prognosis and diagnosis machine learning techniques in future machine health management systems. With this in mind, this work employs three supervised machine learning techniques; support vector machine regression, multilayer artificial neural network model and gaussian process regression, to correlate AE features with corresponding natural wear of slow speed bearings throughout series of laboratory experiments. Analysis of signal parameters such as signal intensity estimator and root mean square was undertaken to discriminate individual types of early damage. It was concluded that neural networks model with back propagation learning algorithm has an advantage over the other models in estimating the RUL for slow speed bearings if the proper network structure is chosen and sufficient data is provided.
        Publication date
        2018-07-01
        Published in
        IEEE Transactions on Industrial Electronics
        Published version
        https://doi.org/10.1109/TIE.2017.2767551
        Other links
        http://hdl.handle.net/2299/20238
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan