University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Revolutionizing ECMO simulation with affordable yet high-Fidelity technology

        View/Open
        Al_Disi_et_al_ECMO_simulation_Accepted_Manuscript.pdf (PDF, 672Kb)
        Author
        Al Disi, Mohammed
        Alsalemi, Abdullah
        Alhomsi, Yahya
        Bensaali, Fayçal
        Amira, Abbes
        Alinier, Guillaume
        Attention
        2299/20241
        Abstract
        Simulation-based training (SBT) is becoming a necessity in educating healthcare professionals who work in high-risk environments, such as the intensive care unit (ICU). This applies to extracorporeal membrane oxygenation (ECMO), a complication-burdened life support ICU modality employed to treat patients with circulatory and/or respiratory failure. Additionally, ECMO can quickly restore perfusion, and hence, used in the pre-hospital or emergency setting as an extracorporeal cardiopulmonary resuscitation (E-CPR) strategy or to maintain donors’ organs after circulatory death. Different ECMO simulation models have been reported in the literature. It ranges from simple mannequin and circuit modification with manual control, to hydraulically capable, remotely controlled mannequins, and high-fidelity simulators. However, the common factor in the incumbent practices is the reliance on a functioning ECMO console and circuit components, which introduces a colossal cost barrier and requires active spending to replace ECMO consumables. Reliance of such specialized and potentially scarce pieces of equipment also significantly reduces training opportunities. Furthermore, attempts to improve the simulation paradigm are faced with ever-increasing technical difficulties. For example, basic objectives such as controlling the displayed circuit pressures requires creating a sophisticated hydraulic model. It becomes even more problematic when considering higher level objectives such as simulating blood oxygenation color differentials, or remotely controlling blood gas parameters, displayed on in-line monitors. Hence, there is a need for lower cost, high-fidelity simulation systems with more customization capabilities that meet the expectations and increasing demand for ECMO therapy.
        Publication date
        2018-07-01
        Published in
        American Journal of Emergency Medicine
        Published version
        https://doi.org/10.1016/j.ajem.2017.11.036
        Other links
        http://www.scopus.com/inward/record.url?scp=85034806617&partnerID=8YFLogxK
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan