University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The feedback of an HC H II region on its parental molecular core : The case of core A1 in the star-forming region G24.78+0.08

        View/Open
        194845.pdf (PDF, 4Mb)
        Author
        Moscadelli, L.
        Rivilla, V. M.
        Cesaroni, R.
        Beltrán, M. T.
        Sánchez-Monge, A.
        Schilke, P.
        Mottram, J. C.
        Ahmadi, A.
        Allen, V.
        Beuther, H.
        Csengeri, T.
        Etoka, S.
        Galli, D.
        Goddi, C.
        Johnston, K. G.
        Klaassen, P. D.
        Kuiper, R.
        Kumar, M. S.N.
        Maud, L. T.
        Möller, T.
        Peters, T.
        Van Der Tak, F.
        Vig, S.
        Attention
        2299/20503
        Abstract
        Context. G24.78+0.08 is a well known high-mass star-forming region, where several molecular cores harboring OB young stellar objects are found inside a clump of size 1 pc. This article focuses on the most prominent of these cores, A1, where an intense hypercompact (HC) HII region has been discovered by previous observations. Aims. Our aim is to determine the physical conditions and the kinematics of core A1, and study the interaction of the HII region with the parental molecular core. Methods. We combine ALMA 1.4 mm high-angular resolution (000: 2) observations of continuum and line emission with multi-epoch Very Long Baseline Interferometry data of water 22 GHz and methanol 6.7 GHz masers. These observations allow us to study the gas kinematics on linear scales from 10 to 104 au, and to accurately map the physical conditions of the gas over core A1. Results. The 1.4 mm continuum is dominated by free-free emission from the intense HC HII region (size 1000 au) observed to the North of core A1 (region A1N). Analyzing the H30a line, we reveal a fast bipolar flow in the ionized gas, covering a range of LSR velocities (VLSR) of 60 km s-1. The amplitude of the VLSR gradient, 22 km s-1 mpc-1, is one of the highest so far observed towards HC HII regions. Water and methanol masers are distributed around the HC HII region in A1N, and the maser three-dimensional (3D) velocities clearly indicate that the ionized gas is expanding at high speed (=200 km s-1) into the surrounding molecular gas. The temperature distribution (in the range 100-400 K) over core A1, traced with molecular (CH3OCHO, 13CH3CN, 13CH3OH, and CH3CH2CN) transitions with level energy in the range 30 K = Eu/k = 300 K, reflects the distribution of shocks produced by the fastexpansion of the ionized gas of the HII region. The high-energy (550 K = Eu/k = 800 K) transitions of vibrationally excited CH3CN are likely radiatively pumped, and their rotational temperature can significantly differ from the kinetic temperature of the gas. Over core A1, the VLSR maps from both the 1.4 mm molecular lines and the 6.7 GHz methanol masers consistently show a VLSR gradient (amplitude 0.3 km s-1 mpc-1) directed approximately SN. Rather than gravitationally supported rotation of a massive toroid, we interpret this velocity gradient as a relatively slow expansion of core A1.
        Publication date
        2018-08-01
        Published in
        Astronomy and Astrophysics
        Published version
        https://doi.org/10.1051/0004-6361/201832680
        Other links
        http://hdl.handle.net/2299/20503
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan