University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Developing an agent-based simulation model of software evolution

        View/Open
        Ali_Doolan_Wernick_Wakelam_Final_aam.pdf (PDF, 1Mb)
        Author
        Shallaw Mohammed
        Doolan, Martina
        Wernick, Paul
        Wakelam, Ed
        Attention
        2299/20700
        Abstract
        Context In attempt to simulate the factors that affect the software evolution behaviour and possibly predict it, several simulation models have been developed recently. The current system dynamic (SD) simulation model of software evolution process was built based on actor-network theory (ANT) of software evolution by using system dynamic environment, which is not a suitable environment to reflect the complexity of ANT theory. In addition the SD model has not been investigated for its ability to represent the real-world process of software evolution. Objectives This paper aims to re-implements the current SD model to an agent-based simulation environment ‘Repast’ and checks the behaviour of the new model compared to the existing SD model. It also aims to investigate the ability of the new Repast model to represent the real-world process of software evolution. Methods a new agent-based simulation model is developed based on the current SD model's specifications and then tests similar to the previous model tests are conducted in order to perform a comparative evaluation between of these two results. In addition an investigation is carried out through an interview with an expert in software development area to investigate the model's ability to represent real-world process of software evolution. Results The Repast model shows more stable behaviour compared with the SD model. Results also found that the evolution health of the software can be calibrated quantitatively and that the new Repast model does have the ability to represent real-world processes of software evolution. Conclusion It is concluded that by applying a more suitable simulation environment (agent-based) to represent ANT theory of software evolution, that this new simulation model will show more stable bahaviour compared with the previous SD model; And it will also shows the ability to represent (at least quantatively) the real-world aspect of software evolution.
        Publication date
        2018-04-01
        Published in
        Information and Software Technology
        Published version
        https://doi.org/10.1016/j.infsof.2017.11.013
        Other links
        http://hdl.handle.net/2299/20700
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan