A machine-learning method for identifying multi-wavelength counterparts of submillimeter galaxies : training and testing using AS2UDS and ALESS
View/ Open
Author
An, FangXia
Stach, S. M.
Smail, Ian
Swinbank, A. M.
Almaini, O.
Hartley, W.
Maltby, D. T.
Ivison, R. J.
Arumugam, V.
Wardlow, J. L.
Cooke, E. A.
Gullberg, B.
Chen, Chian-Chou
Geach, J. E.
Scott, D.
Dunlop, J. S.
Farrah, D.
Werf, P. van der
Blain, A. W.
Conselice, C.
Michałowski, M. J.
Chapman, S. C.
Coppin, K. E. K.
Attention
2299/20933
Abstract
We describe the application of supervised machine-learning algorithms to identify the likely multiwavelength counterparts to submillimeter sources detected in panoramic, single-dish submillimeter surveys. As a training set, we employ a sample of 695 (S 870μm ≳ 1 mJy) submillimeter galaxies (SMGs) with precise identifications from the ALMA follow-up of the SCUBA-2 Cosmology Legacy Survey's UKIDSS-UDS field (AS2UDS). We show that radio emission, near-/mid-infrared colors, photometric redshift, and absolute H-band magnitude are effective predictors that can distinguish SMGs from submillimeter-faint field galaxies. Our combined radio + machine-learning method is able to successfully recover ∼85% of ALMA-identified SMGs that are detected in at least three bands from the ultraviolet to radio. We confirm the robustness of our method by dividing our training set into independent subsets and using these for training and testing, respectively, as well as applying our method to an independent sample of ∼100 ALMA-identified SMGs from the ALMA/LABOCA ECDF-South Survey (ALESS). To further test our methodology, we stack the 870 μm ALMA maps at the positions of those K-band galaxies that are classified as SMG counterparts by the machine learning but do not have a >4.3σ ALMA detection. The median peak flux density of these galaxies is S 870μm = (0.61 ± 0.03) mJy, demonstrating that our method can recover faint and/or diffuse SMGs even when they are below the detection threshold of our ALMA observations. In future, we will apply this method to samples drawn from panoramic single-dish submillimeter surveys that currently lack interferometric follow-up observations to address science questions that can only be tackled with large statistical samples of SMGs.
Publication date
2018-07-27Published in
The Astrophysical JournalPublished version
https://doi.org/10.3847/1538-4357/aacdaaOther links
http://hdl.handle.net/2299/20933Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
The H alpha galaxy survey. I. The galaxy sample, H alpha narrow-band observations and star formation parameters for 334 galaxies
James, P.A.; Shane, N.S.; Beckman, J.E.; Cardwell, A.; Collins, C.A.; Etherton, J.; de Jong, R.S.; Fathi, K.; Knapen, J.; Peletier, R.F.; Percival, S.M.; Pollacco, D.L.; Seigar, M.S.; Stedman, S. (2004)We discuss the selection and observations of a large sample of nearby galaxies, which we are using to quantify the star formation activity in the local Universe. The sample consists of 334 galaxies across all Hubble types ... -
On the Key Processes that Drive Galaxy Evolution: the Role of Galaxy Mergers, Accretion, Local Environment and Feedback in Shaping the Present-Day Universe
Martin, Garreth (2019-07-17)The study of galaxy evolution is a fundamental discipline in modern astrophysics, dealing with how and why galaxies of all types evolve over time. The diversity of present-day galaxies is a reflection of the processes ... -
The Physical Processes that Drive Galaxy Evolution - from Massive Galaxies to the Dwarf Regime
Jackson, Ryan (2021-09-25)The study of galaxy formation and evolution is a cornerstone in astrophysics, as galaxies connect together all scales of the Universe. The physical processes that govern galaxies therefore needs to be fully understood if ...