University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Empirical Formulation of Highway Traffic Flow Prediction Objective Function Based on Network Topology

        View/Open
        29_IJARSET_Arsalan_latest.pdf (PDF, 1Mb)
        Author
        Rahi, Arsalan
        Ramalingam, Soodamani
        Attention
        2299/20943
        Abstract
        Accurate Highway road predictions are necessary for timely decision making by the transport authorities. In this paper, we propose a traffic flow objective function for a highway road prediction model. The bi-directional flow function of individual roads is reported considering the net inflows and outflows by a topological breakdown of the highway network. Further, we optimise and compare the proposed objective function for constraints involved using stacked long short-term memory (LSTM) based recurrent neural network machine learning model considering different loss functions and training optimisation strategies. Finally, we report the best fitting machine learning model parameters for the proposed flow objective function for better prediction accuracy.
        Publication date
        2018-11-05
        Published in
        International Journal of Advanced Research in Science, Engineering and Technology
        Other links
        http://hdl.handle.net/2299/20943
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan